Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 892195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712500

RESUMEN

Changes in dynamics of ATP γ- and ß-phosphoryl turnover and metabolic flux through phosphotransfer pathways in cancer cells are still unknown. Using 18O phosphometabolite tagging technology, we have discovered phosphotransfer dynamics in three breast cancer cell lines: MCF7 (non-aggressive), MDA-MB-231 (aggressive), and MCF10A (control). Contrary to high intracellular ATP levels, the 18O labeling method revealed a decreased γ- and ß-ATP turnover in both breast cancer cells, compared to control. Lower ß-ATP[18O] turnover indicates decreased adenylate kinase (AK) flux. Aggressive cancer cells had also reduced fluxes through hexokinase (HK) G-6-P[18O], creatine kinase (CK) [CrP[18O], and mitochondrial G-3-P[18O] substrate shuttle. Decreased CK metabolic flux was linked to the downregulation of mitochondrial MTCK1A in breast cancer cells. Despite the decreased overall phosphoryl flux, overexpression of HK2, AK2, and AK6 isoforms within cell compartments could promote aggressive breast cancer growth.

2.
Biochem Biophys Res Commun ; 546: 59-64, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33571905

RESUMEN

Adenylate kinase2 (AK2) catalyzes trans-compartmental nucleotide exchange, but the functional implications of this mitochondrial intermembrane isoform is only partially understood. Here, transgenic AK2-/- null homozygosity was lethal early in embryo, indicating a mandatory role for intact AK2 in utero development. In the adult, conditional organ-specific ablation of AK2 precipitated abrupt heart failure with Krebs cycle and glycolytic metabolite buildup, suggesting a vital contribution to energy demanding cardiac performance. Depressed pump function recovered to pre-deletion levels overtime, suggestive of an adaptive response. Compensatory upregulation of phosphotransferase AK1, AK3, AK4 isozymes, creatine kinase isoforms, and hexokinase, along with remodeling of cell cycle/growth genes and mitochondrial ultrastructure supported organ rescue. Taken together, the requirement of AK2 in early embryonic stages, and the immediate collapse of heart performance in the AK2-deficient postnatal state underscore a primordial function of the AK2 isoform. Unsalvageable in embryo, loss of AK2 in the adult heart was recoverable, underscoring an AK2-integrated bioenergetics system with innate plasticity to maintain homeostasis on demand.


Asunto(s)
Adenilato Quinasa/metabolismo , Desarrollo Embrionario , Homeostasis , Miocardio/enzimología , Miocardio/metabolismo , Adaptación Fisiológica , Adenilato Quinasa/deficiencia , Adenilato Quinasa/genética , Animales , Ciclo del Ácido Cítrico , Pérdida del Embrión , Desarrollo Embrionario/genética , Metabolismo Energético , Femenino , Eliminación de Gen , Genes Esenciales/genética , Glucólisis , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Homeostasis/genética , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Transgénicos
3.
PLoS One ; 16(1): e0245348, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33471801

RESUMEN

The ability of butyrate to promote differentiation of cancer cells has important implication for colorectal cancer (CRC) prevention and therapy. In this study, we examined the effect of sodium butyrate (NaBT) on the energy metabolism of colon adenocarcinoma Caco-2 cells coupled with their differentiation. NaBT increased the activity of alkaline phosphatase indicating differentiation of Caco-2 cells. Changes in the expression of pluripotency-associated markers OCT4, NANOG and SOX2 were characterized during the induced differentiation at mRNA level along with the measures that allowed distinguishing the expression of different transcript variants. The functional activity of mitochondria was studied by high-resolution respirometry. Glycolytic pathway and phosphotransfer network were analyzed using enzymatical assays. The treatment of Caco-2 cells with NaBT increased production of ATP by oxidative phosphorylation, enhanced mitochondrial spare respiratory capacity and caused rearrangement of the cellular phosphotransfer networks. The flexibility of phosphotransfer networks depended on the availability of glutamine, but not glucose in the cell growth medium. These changes were accompanied by suppressed cell proliferation and altered gene expression of the main pluripotency-associated transcription factors. This study supports the view that modulating cell metabolism through NaBT can be an effective strategy for treating CRC. Our data indicate a close relationship between the phosphotransfer performance and metabolic plasticity of CRC, which is associated with the cell differentiation state.


Asunto(s)
Antineoplásicos/farmacología , Ácido Butírico/farmacología , Neoplasias del Colon/tratamiento farmacológico , Metabolismo Energético/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Células CACO-2 , Diferenciación Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Humanos
4.
Front Oncol ; 10: 660, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32509571

RESUMEN

A hallmark of cancer cells is the ability to rewire their bioenergetics and metabolic signaling circuits to fuel their uncontrolled proliferation and metastasis. Adenylate kinase (AK) is the critical enzyme in the metabolic monitoring of cellular adenine nucleotide homeostasis. It also directs AK→ AMP→ AMPK signaling controlling cell cycle and proliferation, and ATP energy transfer from mitochondria to distribute energy among cellular processes. The significance of AK isoform network in the regulation of a variety of cellular processes, which include cell differentiation and motility, is rapidly growing. Adenylate kinase 2 (AK2) isoform, localized in intermembrane and intra-cristae space, is vital for mitochondria nucleotide exchange and ATP export. AK2 deficiency disrupts cell energetics, causes severe human diseases, and is embryonically lethal in mice, signifying the importance of catalyzed phosphotransfer in cellular energetics. Suppression of AK phosphotransfer and AMP generation in cancer cells and consequently signaling through AMPK could be an important factor in the initiation of cancerous transformation, unleashing uncontrolled cell cycle and growth. Evidence also builds up that shift in AK isoforms is used later by cancer cells for rewiring energy metabolism to support their high proliferation activity and tumor progression. As cell motility is an energy-consuming process, positioning of AK isoforms to increased energy consumption sites could be an essential factor to incline cancer cells to metastases. In this review, we summarize recent advances in studies of the significance of AK isoforms involved in cancer cell metabolism, metabolic signaling, metastatic potential, and a therapeutic target.

5.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30261663

RESUMEN

Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.


Asunto(s)
Respiración de la Célula , Citoplasma/metabolismo , Transferencia de Energía , Mitocondrias/metabolismo , Adenilato Quinasa/metabolismo , Animales , Creatina Quinasa/metabolismo , Humanos , Espacio Intracelular/metabolismo , Fosforilación Oxidativa
6.
J Bioenerg Biomembr ; 50(5): 339-354, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29998379

RESUMEN

Previous studies have shown that class II ß-tubulin plays a key role in the regulation of oxidative phosphorylation (OXPHOS) in some highly differentiated cells, but its role in malignant cells has remained unclear. To clarify these aspects, we compared the bioenergetic properties of HL-1 murine sarcoma cells, murine neuroblastoma cells (uN2a) and retinoic acid - differentiated N2a cells (dN2a). We examined the expression and possible co-localization of mitochondrial voltage dependent anion channel (VDAC) with hexokinase-2 (HK-2) and ßII-tubulin, the role of depolymerized ßII-tubuline and the effect of both proteins in the regulation of mitochondrial outer membrane (MOM) permeability. Our data demonstrate that neuroblastoma and sarcoma cells are prone to aerobic glycolysis, which is partially mediated by the presence of VDAC bound HK-2. Microtubule destabilizing (colchicine) and stabilizing (taxol) agents do not affect the MOM permeability for ADP in N2a and HL-1 cells. The obtained results show that ßII-tubulin does not regulate the MOM permeability for adenine nucleotides in these cells. HL-1 and NB cells display comparable rates of ADP-activated respiration. It was also found that differentiation enhances the involvement of OXPHOS in N2a cells due to the rise in their mitochondrial reserve capacity. Our data support the view that the alteration of mitochondrial affinity for ADNs is one of the characteristic features of cancer cells. It can be concluded that the binding sites for tubulin and hexokinase within the large intermembrane protein supercomplex Mitochondrial Interactosome, could be different between muscle and cancer cells.


Asunto(s)
Glucólisis/fisiología , Proteínas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Humanos , Ratones , Membranas Mitocondriales/metabolismo , Permeabilidad
7.
Biochem Cell Biol ; : 1-10, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-30058357

RESUMEN

The aim of this work was to explore the key bioenergetic properties for mitochondrial respiration in the widely-used Caco-2 cell line and in human colorectal cancer (HCC) postoperational tissue samples. Oxygraphy and metabolic control analysis (MCA) were applied to estimate the function of oxidative phosphorylation in cultured Caco-2 cells and HCC tissue samples. The mitochondria of Caco-2 cells and HCC tissues displayed larger functional activity of respiratory complex (C)II compared with CI, whereas in normal colon tissue an inverse pattern in the ratio of CI to CII activity was observed. MCA showed that the respiration in Caco-2 and HCC tissue cells is regulated by different parts of electron transport chain. In HCC tissues, this control is performed essentially at the level of respiratory chain complexes I-IV, whereas in Caco-2 cells at the level of CIV (cytochrome c oxidase) and the ATP synthasome. The differences we found in the regulation of respiratory chain activity and glycose index could represent an adaptive response to distinct growth conditions; this highlights the importance of proper validation of results obtained from in-vitro models before their extrapolation to the more complex in-vivo systems.

8.
Oxid Med Cell Longev ; 2017: 1372640, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28781720

RESUMEN

We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Colorrectales/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Respiración de la Célula/fisiología , Citrato (si)-Sintasa/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Cinética , Células MCF-7 , Membranas Mitocondriales/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno/fisiología
9.
Biochim Biophys Acta Gen Subj ; 1861(8): 2146-2154, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28552560

RESUMEN

Recent studies have shown that cellular bioenergetics may be involved in stem cell differentiation. Considering that during cancerogenesis cells acquire numerous properties of stem cells, it is possible to assume that the energy metabolism in tumorigenic cells might be differently regulated. The aim of this study was to compare the mitochondrial bioenergetic profile of normal pluripotent human embryonic stem cells (hESC) and relatively nullipotent embryonal carcinoma cells (2102Ep cell line). We examined three parameters related to cellular bioenergetics: phosphotransfer system, aerobic glycolysis, and oxygen consumption. Activities and expression levels of main enzymes that facilitate energy transfer were measured. The oxygen consumption rate studies were performed to investigate the respiratory capacity of cells. 2102Ep cells showed a shift in energy distribution towards adenylate kinase network. The total AK activity was almost 3 times higher in 2102Ep cells compared to hESCs (179.85±5.73 vs 64.39±2.55mU/mg of protein) and the expression of AK2 was significantly higher in these cells, while CK was downregulated. 2102Ep cells displayed reduced levels of oxygen consumption and increased levels of aerobic glycolysis compared to hESCs. The compromised respiration of 2102Ep cells is not the result of increased mitochondrial mass, increased proton leak, and reduced respiratory reserve capacity of the cells or impairment of respiratory chain complexes. Our data showed that the bioenergetic profile of 2102Ep cells clearly distinguishes them from normal hESCs. This should be considered when this cell line is used as a reference, and highlight the importance of further research concerning energy metabolism of stem cells.


Asunto(s)
Células Madre de Carcinoma Embrionario/metabolismo , Metabolismo Energético , Células Madre Embrionarias Humanas/metabolismo , Consumo de Oxígeno , Adenilato Quinasa/análisis , Línea Celular Tumoral , Creatina Quinasa/análisis , Glucólisis , Humanos , Mitocondrias/metabolismo
10.
Mol Cell Biochem ; 432(1-2): 141-158, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28293876

RESUMEN

The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.


Asunto(s)
Envejecimiento/metabolismo , Glucólisis/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Fosforilación Oxidativa , Animales , Senescencia Celular/fisiología , Ratas , Ratas Wistar
11.
J Bioenerg Biomembr ; 48(5): 531-548, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27854030

RESUMEN

The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.


Asunto(s)
Adenilato Quinasa/análisis , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula , Células Cultivadas , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Citosol/enzimología , Humanos , Isoenzimas/análisis , Ratones , Mitocondrias/enzimología , Ratas
12.
Ageing Res Rev ; 28: 1-14, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27063513

RESUMEN

Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.


Asunto(s)
Envejecimiento/fisiología , Metabolismo Energético/fisiología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Humanos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Biochem Biophys Rep ; 4: 111-125, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29124194

RESUMEN

The aim of the work was to evaluate whether or not there is glycolytic reprogramming in the neighboring cells of colorectal cancer (CRC). Using postoperative material we have compared the functional capacity of oxidative phosphorylation (OXPHOS) in CRC cells, their glycolytic activity and their inclination to aerobic glycolysis, with those of the surrounding and healthy colon tissue cells. Experiments showed that human CRC cannot be considered a hypoxic tumor, since the malignancy itself and cells surrounding it exhibited even higher rates of OXPHOS than healthy large intestine. The absence of acute hypoxia in colorectal carcinomas was also confirmed by their practically equal glucose-phosphorylating capacity as compared with surrounding non-tumorous tissue and by upregulation of VEGF family and their ligands. Studies indicated that human CRC cells in vivo exert a strong distant effect on the energy metabolism of neighboring cells, so that they acquire the bioenergetic parameters specific to the tumor itself. The growth of colorectal carcinomas was associated with potent downregulation of the creatine kinase system. As compared with healthy colon tissue, the tumor surrounding cells display upregulation of OXPHOS and have high values of basal and ADP activated respiration rates. Strong differences between the normal and CRC cells in the affinity of their mitochondria for ADP were revealed; the corresponding Km values were measured as 93.6±7.7 µM for CRC cells and 84.9±9.9 µM for nearby tissue; both these apparent Km (ADP) values were considerably (by almost 3 times) lower in comparison with healthy colon tissue cells (256±34 µM).

14.
Int J Biochem Cell Biol ; 55: 171-86, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25218857

RESUMEN

The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used. Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis-Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 µM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 µM). But concurrently the Vm value of the tumor samples was 60-80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin ß-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides. The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase. Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed. Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales/genética , Creatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Hexoquinasa/metabolismo , Humanos , Inmunohistoquímica , Microscopía Confocal , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
J Bioenerg Biomembr ; 46(5): 421-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25209018

RESUMEN

Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.


Asunto(s)
Mitocondrias Musculares/metabolismo , Membranas Mitocondriales/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Unión Proteica , Canales Aniónicos Dependientes del Voltaje/metabolismo
16.
J Bioenerg Biomembr ; 46(1): 17-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24072403

RESUMEN

The aim of the present study is to clarify some aspects of the mechanisms of regulation of mitochondrial metabolism in neuroblastoma (NB) cells. Experiments were performed on murine Neuro-2a (N2a) cell line, and the same cells differentiated by all-trans-retinoic acid (dN2a) served as in vitro model of normal neurons. Oxygraphy and Metabolic Control Analysis (MCA) were applied to characterize the function of mitochondrial oxidative phosphorylation (OXPHOS) in NB cells. Flux control coefficients (FCCs) for components of the OXPHOS system were determined using titration studies with specific non-competitive inhibitors in the presence of exogenously added ADP. Respiration rates of undifferentiated Neuro-2a cells (uN2a) and the FCC of Complex-II in these cells were found to be considerably lower than those in dN2a cells. Our results show that NB is not an exclusively glycolytic tumor and could produce a considerable part of ATP via OXPHOS. Two important enzymes - hexokinase-2 and adenylate kinase-2 can play a role in the generation of ATP in NB cells. MCA has shown that in uN2a cells the key sites in the regulation of OXPHOS are complexes I, II and IV, whereas in dN2a cells complexes II and IV. Results obtained for the phosphate and adenine nucleotide carriers showed that in dN2a cells these carriers exerted lower control over the OXPHOS than in undifferentiated cells. The sum of FCCs for both types of NB cells was found to exceed significantly that for normal cells suggesting that in these cells the respiratory chain was somehow reorganized or assembled into large supercomplexes.


Asunto(s)
Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Adenilato Quinasa/metabolismo , Animales , Diferenciación Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Creatina Quinasa/metabolismo , Metabolismo Energético , Hexoquinasa/metabolismo , Microscopía Confocal , Mitocondrias/enzimología , Neuroblastoma/enzimología , Ratas
17.
Front Physiol ; 4: 151, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825460

RESUMEN

Bioenergetic profiling of cancer cells is of great potential because it can bring forward new and effective therapeutic strategies along with early diagnosis. Metabolic Control Analysis (MCA) is a methodology that enables quantification of the flux control exerted by different enzymatic steps in a metabolic network thus assessing their contribution to the system's function. Our main goal is to demonstrate the applicability of MCA for in situ studies of energy metabolism in human breast and colorectal cancer cells as well as in normal tissues. We seek to determine the metabolic conditions leading to energy flux redirection in cancer cells. A main result obtained is that the adenine nucleotide translocator exhibits the highest control of respiration in human breast cancer thus becoming a prospective therapeutic target. Additionally, we present evidence suggesting the existence of mitochondrial respiratory supercomplexes that may represent a way by which cancer cells avoid apoptosis. The data obtained show that MCA applied in situ can be insightful in cancer cell energetic research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...