Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Proc Natl Acad Sci U S A ; 121(10): e2315558121, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38408249

Direct reciprocity is a powerful mechanism for cooperation in social dilemmas. The very logic of reciprocity, however, seems to require that individuals are symmetric, and that everyone has the same means to influence each others' payoffs. Yet in many applications, individuals are asymmetric. Herein, we study the effect of asymmetry in linear public good games. Individuals may differ in their endowments (their ability to contribute to a public good) and in their productivities (how effective their contributions are). Given the individuals' productivities, we ask which allocation of endowments is optimal for cooperation. To this end, we consider two notions of optimality. The first notion focuses on the resilience of cooperation. The respective endowment distribution ensures that full cooperation is feasible even under the most adverse conditions. The second notion focuses on efficiency. The corresponding endowment distribution maximizes group welfare. Using analytical methods, we fully characterize these two endowment distributions. This analysis reveals that both optimality notions favor some endowment inequality: More productive players ought to get higher endowments. Yet the two notions disagree on how unequal endowments are supposed to be. A focus on resilience results in less inequality. With additional simulations, we show that the optimal endowment allocation needs to account for both the resilience and the efficiency of cooperation.


Financial Management , Resilience, Psychological , Humans , Cooperative Behavior , Efficiency , Social Welfare , Game Theory
2.
Nat Commun ; 14(1): 4153, 2023 07 12.
Article En | MEDLINE | ID: mdl-37438341

Many human interactions feature the characteristics of social dilemmas where individual actions have consequences for the group and the environment. The feedback between behavior and environment can be studied with the framework of stochastic games. In stochastic games, the state of the environment can change, depending on the choices made by group members. Past work suggests that such feedback can reinforce cooperative behaviors. In particular, cooperation can evolve in stochastic games even if it is infeasible in each separate repeated game. In stochastic games, participants have an interest in conditioning their strategies on the state of the environment. Yet in many applications, precise information about the state could be scarce. Here, we study how the availability of information (or lack thereof) shapes evolution of cooperation. Already for simple examples of two state games we find surprising effects. In some cases, cooperation is only possible if there is precise information about the state of the environment. In other cases, cooperation is most abundant when there is no information about the state of the environment. We systematically analyze all stochastic games of a given complexity class, to determine when receiving information about the environment is better, neutral, or worse for evolution of cooperation.


Cooperative Behavior , Mass Gatherings , Humans
3.
PLoS One ; 18(2): e0279838, 2023.
Article En | MEDLINE | ID: mdl-36848357

Allometric settings of population dynamics models are appealing due to their parsimonious nature and broad utility when studying system level effects. Here, we parameterise the size-scaled Rosenzweig-MacArthur differential equations to eliminate prey-mass dependency, facilitating an in depth analytic study of the equations which incorporates scaling parameters' contributions to coexistence. We define the functional response term to match empirical findings, and examine situations where metabolic theory derivations and observation diverge. The dynamical properties of the Rosenzweig-MacArthur system, encompassing the distribution of size-abundance equilibria, the scaling of period and amplitude of population cycling, and relationships between predator and prey abundances, are consistent with empirical observation. Our parameterisation is an accurate minimal model across 15+ orders of mass magnitude.


Bicycling , Population Dynamics
4.
R Soc Open Sci ; 9(11): 220744, 2022 Nov.
Article En | MEDLINE | ID: mdl-36340514

Environments shape communities by driving individual interactions and the evolutionary outcome of competition. In static, homogeneous environments a robust, evolutionary stable, outcome is sometimes reachable. However, inherently stochastic, this evolutionary process need not stabilize, resulting in a dynamic ecological state, often observed in microbial communities. We use evolutionary games to study the evolution of phenotypic competition in dynamic environments. Under the assumption that phenotypic expression depends on the environmental shifts, existing periodic relationships may break or result in formation of new periodicity in phenotypic interactions. The exact outcome depends on the environmental shift itself, indicating the importance of understanding how environments influence affected systems. Under periodic environmental fluctuations, a stable state preserving dominant phenotypes may exist. However, rapid environmental shifts can lead to critical shifts in the phenotypic evolutionary balance. This might lead to environmentally favoured phenotypes dominating making the system vulnerable. We suggest that understanding of the robustness of the system's current state is necessary to anticipate when it will shift to a new equilibrium via understanding what level of perturbations the system can take before its equilibrium changes. Our results provide insights in how microbial communities can be steered to states where they are dominated by desired phenotypes.

5.
PLoS Comput Biol ; 17(4): e1008523, 2021 04.
Article En | MEDLINE | ID: mdl-33844680

A game of rock-paper-scissors is an interesting example of an interaction where none of the pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we consider an unstable version of rock-paper-scissors dynamics and allow individuals to make behavioural mistakes during the strategy execution. We show that such an assumption can break a cyclic relationship leading to a stable equilibrium emerging with only one strategy surviving. We consider two cases: completely random mistakes when individuals have no bias towards any strategy and a general form of mistakes. Then, we determine conditions for a strategy to dominate all other strategies. However, given that individuals who adopt a dominating strategy are still prone to behavioural mistakes in the observed behaviour, we may still observe extinct strategies. That is, behavioural mistakes in strategy execution stabilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-existence equilibrium.


Game Theory , Biological Evolution , Humans
6.
J Math Biol ; 77(3): 627-646, 2018 09.
Article En | MEDLINE | ID: mdl-29484454

The adaptation process of a species to a new environment is a significant area of study in biology. As part of natural selection, adaptation is a mutation process which improves survival skills and reproductive functions of species. Here, we investigate this process by combining the idea of incompetence with evolutionary game theory. In the sense of evolution, incompetence and training can be interpreted as a special learning process. With focus on the social side of the problem, we analyze the influence of incompetence on behavior of species. We introduce an incompetence parameter into a learning function in a single-population game and analyze its effect on the outcome of the replicator dynamics. Incompetence can change the outcome of the game and its dynamics, indicating its significance within what are inherently imperfect natural systems.


Biological Evolution , Game Theory , Models, Genetic , Adaptation, Biological/genetics , Animals , Behavior, Animal , Environment , Mathematical Concepts , Mutation , Population Dynamics/statistics & numerical data , Selection, Genetic , Stochastic Processes
...