Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 32(1): e4507, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367441

RESUMEN

Malaria is a substantial global health burden with 229 million cases in 2019 and 450,000 deaths annually. Plasmodium vivax is the most widespread malaria-causing parasite putting 2.5 billion people at risk of infection. P. vivax has a dormant liver stage and therefore can exist for long periods undetected. Its blood-stage can cause severe reactions and hospitalization. Few treatment and detection options are available for this pathogen. A unique characteristic of P. vivax is that it depends on the Duffy antigen/receptor for chemokines (DARC) on the surface of host red blood cells for invasion. P. vivax employs the Duffy binding protein (DBP) to bind to DARC. We first de novo designed a three helical bundle scaffolding database which was screened via protease digestions for stability. Protease-resistant scaffolds highlighted thresholds for stability, which we utilized for selecting DARC mimetics that we subsequentially designed through grafting and redesign of these scaffolds. The optimized design small helical protein disrupts the DBP:DARC interaction. The inhibitor blocks the receptor binding site on DBP and thus forms a strong foundation for a therapeutic that will inhibit reticulocyte infection and prevent the pathogenesis of P. vivax malaria.


Asunto(s)
Malaria Vivax , Malaria , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos , Malaria Vivax/tratamiento farmacológico , Malaria/tratamiento farmacológico , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/parasitología , Proteínas Portadoras , Interacciones Huésped-Patógeno , Péptido Hidrolasas/metabolismo
2.
Nat Commun ; 13(1): 5661, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192397

RESUMEN

Antibodies, and antibody derivatives such as nanobodies, contain immunoglobulin-like (Ig) ß-sandwich scaffolds which anchor the hypervariable antigen-binding loops and constitute the largest growing class of drugs. Current engineering strategies for this class of compounds rely on naturally existing Ig frameworks, which can be hard to modify and have limitations in manufacturability, designability and range of action. Here, we develop design rules for the central feature of the Ig fold architecture-the non-local cross-ß structure connecting the two ß-sheets-and use these to design highly stable Ig domains de novo, confirm their structures through X-ray crystallography, and show they can correctly scaffold functional loops. Our approach opens the door to the design of antibody-like scaffolds with tailored structures and superior biophysical properties.


Asunto(s)
Anticuerpos de Dominio Único , Secuencia de Aminoácidos , Anticuerpos/química , Regiones Determinantes de Complementariedad , Dominios de Inmunoglobulinas , Modelos Moleculares , Conformación Proteica
3.
Nat Commun ; 12(1): 856, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558528

RESUMEN

Through the efforts of many groups, a wide range of fluorescent protein reporters and sensors based on green fluorescent protein and its relatives have been engineered in recent years. Here we explore the incorporation of sensing modalities into de novo designed fluorescence-activating proteins, called mini-fluorescence-activating proteins (mFAPs), that bind and stabilize the fluorescent cis-planar state of the fluorogenic compound DFHBI. We show through further design that the fluorescence intensity and specificity of mFAPs for different chromophores can be tuned, and the fluorescence made sensitive to pH and Ca2+ for real-time fluorescence reporting. Bipartite split mFAPs enable real-time monitoring of protein-protein association and (unlike widely used split GFP reporter systems) are fully reversible, allowing direct readout of association and dissociation events. The relative ease with which sensing modalities can be incorporated and advantages in smaller size and photostability make de novo designed fluorescence-activating proteins attractive candidates for optical sensor engineering.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Acetilcolina/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Fluorescencia , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/química , Modelos Moleculares
4.
Biophysicist (Rockv) ; 2(1): 108-122, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35128343

RESUMEN

Biomolecular structure drives function, and computational capabilities have progressed such that the prediction and computational design of biomolecular structures is increasingly feasible. Because computational biophysics attracts students from many different backgrounds and with different levels of resources, teaching the subject can be challenging. One strategy to teach diverse learners is with interactive multimedia material that promotes self-paced, active learning. We have created a hands-on education strategy with a set of sixteen modules that teach topics in biomolecular structure and design, from fundamentals of conformational sampling and energy evaluation to applications like protein docking, antibody design, and RNA structure prediction. Our modules are based on PyRosetta, a Python library that encapsulates all computational modules and methods in the Rosetta software package. The workshop-style modules are implemented as Jupyter Notebooks that can be executed in the Google Colaboratory, allowing learners access with just a web browser. The digital format of Jupyter Notebooks allows us to embed images, molecular visualization movies, and interactive coding exercises. This multimodal approach may better reach students from different disciplines and experience levels as well as attract more researchers from smaller labs and cognate backgrounds to leverage PyRosetta in their science and engineering research. All materials are freely available at https://github.com/RosettaCommons/PyRosetta.notebooks.

5.
Science ; 364(6441): 658-664, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31097662

RESUMEN

The ability of naturally occurring proteins to change conformation in response to environmental changes is critical to biological function. Although there have been advances in the de novo design of stable proteins with a single, deep free-energy minimum, the design of conformational switches remains challenging. We present a general strategy to design pH-responsive protein conformational changes by precisely preorganizing histidine residues in buried hydrogen-bond networks. We design homotrimers and heterodimers that are stable above pH 6.5 but undergo cooperative, large-scale conformational changes when the pH is lowered and electrostatic and steric repulsion builds up as the network histidine residues become protonated. The transition pH and cooperativity can be controlled through the number of histidine-containing networks and the strength of the surrounding hydrophobic interactions. Upon disassembly, the designed proteins disrupt lipid membranes both in vitro and after being endocytosed in mammalian cells. Our results demonstrate that environmentally triggered conformational changes can now be programmed by de novo protein design.


Asunto(s)
Conformación Proteica , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Concentración de Iones de Hidrógeno , Estabilidad Proteica
6.
J Phycol ; 49(4): 733-45, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27007206

RESUMEN

Dinoflagellate bioluminescence serves as a whole-cell reporter of mechanical stress, which activates a signaling pathway that appears to involve the opening of voltage-sensitive ion channels and release of calcium from intracellular stores. However, little else is known about the initial signaling events that facilitate the transduction of mechanical stimuli. In the present study using the red tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge, two forms of dinoflagellate bioluminescence, mechanically stimulated and spontaneous flashes, were used as reporter systems to pharmacological treatments that targeted various predicted signaling events at the plasma membrane level of the signaling pathway. Pretreatment with 200 µM Gadolinium III (Gd(3+) ), a nonspecific blocker of stretch-activated and some voltage-gated ion channels, resulted in strong inhibition of both forms of bioluminescence. Pretreatment with 50 µM nifedipine, an inhibitor of L-type voltage-gated Ca(2+) channels that inhibits mechanically stimulated bioluminescence, did not inhibit spontaneous bioluminescence. Treatment with 1 mM benzyl alcohol, a membrane fluidizer, was very effective in stimulating bioluminescence. Benzyl alcohol-stimulated bioluminescence was inhibited by Gd(3+) but not by nifedipine, suggesting that its role is through stretch activation via a change in plasma membrane fluidity. These results are consistent with the presence of stretch-activated and voltage-gated ion channels in the bioluminescence mechanotransduction signaling pathway, with spontaneous flashing associated with a stretch-activated component at the plasma membrane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...