Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5353, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918403

RESUMEN

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.


Asunto(s)
Neuronas , Nociceptina , Péptidos Opioides , Receptores Opioides , Animales , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Receptores Opioides/genética , Neuronas/metabolismo , Humanos , Ratones , Masculino , Área Tegmental Ventral/metabolismo , Receptor de Nociceptina , Células HEK293 , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Ligandos , Técnicas Biosensibles/métodos
2.
Cell Rep ; 43(6): 114343, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38865247

RESUMEN

Activation of prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus (ARC) promotes high-fat-diet (HFD)-induced hyperphagia. In turn, PNOCARC neurons can inhibit the anorexic response of proopiomelanocortin (POMC) neurons. Here, we validate the necessity of PNOCARC activity for HFD-induced inhibition of POMC neurons in mice and find that PNOCARC-neuron-dependent inhibition of POMC neurons is mediated by gamma-aminobutyric acid (GABA) release. When monitoring individual PNOCARC neuron activity via Ca2+ imaging, we find a subpopulation of PNOCARC neurons that is inhibited upon gastrointestinal calorie sensing and disinhibited upon HFD feeding. Combining retrograde rabies tracing and circuit mapping, we find that PNOC neurons from the bed nucleus of the stria terminalis (PNOCBNST) provide inhibitory input to PNOCARC neurons, and this inhibitory input is blunted upon HFD feeding. This work sheds light on how an increase in caloric content of the diet can rewire a neuronal circuit, paving the way to overconsumption and obesity development.


Asunto(s)
Dieta Alta en Grasa , Hiperfagia , Núcleos Septales , Animales , Hiperfagia/metabolismo , Ratones , Núcleos Septales/metabolismo , Neuronas/metabolismo , Masculino , Ácido gamma-Aminobutírico/metabolismo , Proopiomelanocortina/metabolismo , Neuronas GABAérgicas/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Ratones Endogámicos C57BL , Precursores de Proteínas , Receptores Opioides
3.
Nat Metab ; 6(3): 473-493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378998

RESUMEN

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.


Asunto(s)
Neuronas , Proopiomelanocortina , Ratones , Masculino , Femenino , Animales , Proopiomelanocortina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
4.
Bio Protoc ; 13(16): e4741, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37638289

RESUMEN

Intracellular signaling pathways directly and indirectly regulate neuronal activity. In cellular electrophysiological measurements with sharp electrodes or whole-cell patch clamp recordings, there is a great risk that these signaling pathways are disturbed, significantly altering the electrophysiological properties of the measured neurons. Perforated-patch clamp recordings circumvent this issue, allowing long-term electrophysiological recordings with minimized impairment of the intracellular milieu. Based on previous studies, we describe a superstition-free protocol that can be used to routinely perform perforated patch clamp recordings for current and voltage measurements.

5.
Nat Metab ; 5(6): 1045-1058, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277610

RESUMEN

Hypothalamic AgRP/NPY neurons are key players in the control of feeding behaviour. Ghrelin, a major orexigenic hormone, activates AgRP/NPY neurons to stimulate food intake and adiposity. However, cell-autonomous ghrelin-dependent signalling mechanisms in AgRP/NPY neurons remain poorly defined. Here we show that calcium/calmodulin-dependent protein kinase ID (CaMK1D), a genetic hot spot in type 2 diabetes, is activated upon ghrelin stimulation and acts in AgRP/NPY neurons to mediate ghrelin-dependent food intake. Global Camk1d-knockout male mice are resistant to ghrelin, gain less body weight and are protected against high-fat-diet-induced obesity. Deletion of Camk1d in AgRP/NPY, but not in POMC, neurons is sufficient to recapitulate above phenotypes. In response to ghrelin, lack of CaMK1D attenuates phosphorylation of CREB and CREB-dependent expression of the orexigenic neuropeptides AgRP/NPY in fibre projections to the paraventricular nucleus (PVN). Hence, CaMK1D links ghrelin action to transcriptional control of orexigenic neuropeptide availability in AgRP neurons.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ghrelina , Ratones , Animales , Masculino , Ghrelina/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Ratones Noqueados , Ingestión de Alimentos , Proteína Quinasa Tipo 1 Dependiente de Calcio Calmodulina/metabolismo
6.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37292957

RESUMEN

Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fiber photometry enabled a direct recording of binding by N/OFQ receptor ligands, as well as the detection of natural or chemogenetically-evoked endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA). In summary, we show that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely-behaving animals.

7.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36543537

RESUMEN

Postsynaptic scaffolding proteins function as central organization hubs, ensuring the synaptic localization of neurotransmitter receptors, trans-synaptic adhesion proteins, and signaling molecules. Gephyrin is the major postsynaptic scaffolding protein at glycinergic and a subset of GABAergic inhibitory synapses. In contrast to cells outside the CNS, where one gephyrin isoform is predominantly expressed, neurons express different splice variants. In this study, we characterized the expression and scaffolding of neuronal gephyrin isoforms differing in the inclusion of the C4 cassettes located in the central C-domain. In hippocampal and cortical neuronal populations, gephyrin P1, lacking additional cassettes, is the most abundantly expressed isoform. In addition, alternative splicing generated isoforms carrying predominantly C4a, and minor amounts of C4c or C4d cassettes. We detected no striking difference in C4 isoform expression between different neuron types and a single neuron can likely express all C4 isoforms. To avoid the cytosolic aggregates that are commonly observed upon exogenous gephyrin expression, we used adeno-associated virus (AAV)-mediated expression to analyze the scaffolding behavior of individual C4 isoforms in murine dissociated hippocampal glutamatergic neurons. While all isoforms showed similar clustering at GABAergic synapses, a thorough quantitative analysis revealed localization differences for the C4c isoform (also known as P2). Specifically, synaptic C4c isoform clusters showed a more distal dendritic localization and reduced occurrence at P1-predominating synapses. Additionally, inhibitory currents displayed faster decay kinetics in the presence of gephyrin C4c compared with P1. Therefore, inhibitory synapse heterogeneity may be influenced, at least in part, by mechanisms relating to C4 cassette splicing.


Asunto(s)
Proteínas Portadoras , Proteínas de la Membrana , Ratones , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Sinapsis/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de GABA-A/metabolismo
8.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345942

RESUMEN

Dopamine acts on neurons in the arcuate nucleus (ARC) of the hypothalamus, which controls homeostatic feeding responses. Here we demonstrate a differential enrichment of dopamine receptor 1 (Drd1) expression in food intake-promoting agouti related peptide (AgRP)/neuropeptide Y (NPY) neurons and a large proportion of Drd2-expressing anorexigenic proopiomelanocortin (POMC) neurons. Owing to the nature of these receptors, this translates into a predominant activation of AgRP/NPY neurons upon dopamine stimulation and a larger proportion of dopamine-inhibited POMC neurons. Employing intersectional targeting of Drd2-expressing POMC neurons, we reveal that dopamine-mediated POMC neuron inhibition is Drd2 dependent and that POMCDrd2+ neurons exhibit differential expression of neuropeptide signaling mediators compared with the global POMC neuron population, which manifests in enhanced somatostatin responsiveness of POMCDrd2+ neurons. Selective chemogenetic activation of POMCDrd2+ neurons uncovered their ability to acutely suppress feeding and to preserve body temperature in fasted mice. Collectively, the present study provides the molecular and functional characterization of POMCDrd2+ neurons and aids our understanding of dopamine-dependent control of homeostatic energy-regulatory neurocircuits.


Asunto(s)
Dopamina , Proopiomelanocortina , Animales , Ratones , Proteína Relacionada con Agouti/metabolismo , Temperatura Corporal , Dopamina/metabolismo , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo
9.
EMBO J ; 41(22): e110963, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36217825

RESUMEN

Autophagy provides nutrients during starvation and eliminates detrimental cellular components. However, accumulating evidence indicates that autophagy is not merely a housekeeping process. Here, by combining mouse models of neuron-specific ATG5 deficiency in either excitatory or inhibitory neurons with quantitative proteomics, high-content microscopy, and live-imaging approaches, we show that autophagy protein ATG5 functions in neurons to regulate cAMP-dependent protein kinase A (PKA)-mediated phosphorylation of a synapse-confined proteome. This function of ATG5 is independent of bulk turnover of synaptic proteins and requires the targeting of PKA inhibitory R1 subunits to autophagosomes. Neuronal loss of ATG5 causes synaptic accumulation of PKA-R1, which sequesters the PKA catalytic subunit and diminishes cAMP/PKA-dependent phosphorylation of postsynaptic cytoskeletal proteins that mediate AMPAR trafficking. Furthermore, ATG5 deletion in glutamatergic neurons augments AMPAR-dependent excitatory neurotransmission and causes the appearance of spontaneous recurrent seizures in mice. Our findings identify a novel role of autophagy in regulating PKA signaling at glutamatergic synapses and suggest the PKA as a target for restoration of synaptic function in neurodegenerative conditions with autophagy dysfunction.


Asunto(s)
Neuronas , Sinapsis , Ratones , Animales , Sinapsis/metabolismo , Neuronas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Transducción de Señal , Autofagia
10.
Elife ; 112022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35792082

RESUMEN

In dopaminergic (DA) Substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here, we show that in tsA-201-cells the membrane-anchored ß2-splice variants ß2a and ß2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of ß2a- and ß2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by ß2a- and/or ß2e-subunits. Thus, ß-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Empalme Alternativo , Animales , Mesencéfalo , Ratones , Enfermedad de Parkinson/genética , Sustancia Negra/fisiología
11.
MethodsX ; 8: 101548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754816

RESUMEN

The ratiometric fluorescent calcium indicator Fura-2 plays a fundamental role in the investigation of cellular calcium dynamics. Despite of its widespread use in the last 30 years, only one publication (Joucla et al., 2010)) proposed a way of obtaining confidence intervals on fitted calcium dynamic model parameters from single 'calcium transients'. Shortcomings of this approach are its requirement for a '3 wavelengths' protocol (excitation at 340 and 380 nm as usual plus at 360 nm, the isosbestic point) as well as the need for an autofluorence / background fluorescence model at each wavelength. Here, we propose a simpler method that eliminates both shortcommings:1.a precise estimation of the standard errors of the raw data is obtained first,2.the standard error of the ratiometric calcium estimator (a function of the raw data values) is derived using both the propagation of uncertainty and a Monte-Carlo method.Once meaningful standard errors for calcium estimates are available, standard errors on fitted model parameters follow directly from the use of nonlinear least-squares optimization algorithms.

12.
Data Brief ; 39: 107494, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34754890

RESUMEN

Multiple processes shape calcium signals in neurons. The spatial and temporal dynamics of these signals are determined by various cellular parameters, including the calcium influx, calcium buffering, and calcium extrusion. The different Ca2+ handling properties can be estimated using the 'added buffer approach' [1], which is based on a single compartment model of Ca2+ buffering. To use this approach, the cell has to be loaded with a Ca2+ sensitive dye (e.g., fura-2) via the patch pipette, which is usually done in the whole-cell patch clamp configuration. However, determining Ca2+ handling properties can be complex and frequently unsuccessful due to the wash-out of intracellular components (e.g., mobile Ca2+ buffers) during whole-cell patch clamp recordings. We present two Ca2+ imaging datasets from adult substantia nigra dopamine neurons where the 'added buffer approach' was either combined with the 'conventional' whole-cell configuration or with a ß-escin based perforated patch clamp configuration. These data can be used to compare the two methods or to draw comparisons with the Ca2+ handling properties of other neuron types. Further details and an in-depth analysis of the new combination of the 'added buffer approach' with the ß-escin based perforated patch clamp configuration can be found in our companion manuscripts "Analysis of neuronal Ca2+ handling properties by combining perforated patch clamp recordings and the added buffer approach" [2] and "A Simple Method for Getting Standard Error on the Ratiometric Calcium Estimator" [3].

13.
Elife ; 102021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34554087

RESUMEN

Local interneurons (LNs) mediate complex interactions within the antennal lobe, the primary olfactory system of insects, and the functional analog of the vertebrate olfactory bulb. In the cockroach Periplaneta americana, as in other insects, several types of LNs with distinctive physiological and morphological properties can be defined. Here, we combined whole-cell patch-clamp recordings and Ca2+ imaging of individual LNs to analyze the role of spiking and nonspiking LNs in inter- and intraglomerular signaling during olfactory information processing. Spiking GABAergic LNs reacted to odorant stimulation with a uniform rise in [Ca2+]i in the ramifications of all innervated glomeruli. In contrast, in nonspiking LNs, glomerular Ca2+ signals were odorant specific and varied between glomeruli, resulting in distinct, glomerulus-specific tuning curves. The cell type-specific differences in Ca2+ dynamics support the idea that spiking LNs play a primary role in interglomerular signaling, while they assign nonspiking LNs an essential role in intraglomerular signaling.


Asunto(s)
Antenas de Artrópodos/inervación , Señalización del Calcio , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Periplaneta/fisiología , Olfato , Potenciales de Acción , Animales , Odorantes , Factores de Tiempo
14.
Nat Commun ; 12(1): 5249, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34475397

RESUMEN

The wake-active orexin system plays a central role in the dynamic regulation of glucose homeostasis. Here we show orexin receptor type 1 and 2 are predominantly expressed in dorsal raphe nucleus-dorsal and -ventral, respectively. Serotonergic neurons in ventral median raphe nucleus and raphe pallidus selectively express orexin receptor type 1. Inactivation of orexin receptor type 1 in serotonin transporter-expressing cells of mice reduced insulin sensitivity in diet-induced obesity, mainly by decreasing glucose utilization in brown adipose tissue and skeletal muscle. Selective inactivation of orexin receptor type 2 improved glucose tolerance and insulin sensitivity in obese mice, mainly through a decrease in hepatic gluconeogenesis. Optogenetic activation of orexin neurons in lateral hypothalamus or orexinergic fibers innervating raphe pallidus impaired or improved glucose tolerance, respectively. Collectively, the present study assigns orexin signaling in serotonergic neurons critical, yet differential orexin receptor type 1- and 2-dependent functions in the regulation of systemic glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Obesidad/metabolismo , Receptores de Orexina/metabolismo , Neuronas Serotoninérgicas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Homeostasis , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Ratones , Fibras Nerviosas/metabolismo , Obesidad/etiología , Receptores de Orexina/genética , Orexinas/metabolismo , Núcleos del Rafe/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transducción de Señal
15.
Cell Calcium ; 97: 102411, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34082340

RESUMEN

Ca2+ functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca2+. Intracellular Ca2+ dynamics are regulated by numerous cellular parameters. Here, we established a new way to determine neuronal Ca2+ handling properties by combining the 'added buffer' approach [1] with perforated patch-clamp recordings [2]. Since the added buffer approach typically employs the standard whole-cell configuration for concentration-controlled Ca2+ indicator loading, it only allows for the reliable estimation of the immobile fraction of intracellular Ca2+ buffers. Furthermore, crucial components of intracellular signaling pathways are being washed out during prolonged whole-cell recordings, leading to cellular deterioration. By combining the added buffer approach with perforated patch-clamp recordings, these issues are circumvented, allowing the precise quantification of the cellular Ca2+ handling properties, including immobile as well as mobile Ca2+ buffers.

16.
Nat Neurosci ; 24(7): 913-929, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002087

RESUMEN

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.


Asunto(s)
Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Proopiomelanocortina/metabolismo , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Hipotálamo/citología , Ratones , Ratones Transgénicos , Neuronas/citología
17.
Cell Tissue Res ; 383(1): 59-73, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33486607

RESUMEN

Highly interconnected neural networks perform olfactory signal processing in the central nervous system. In insects, the first synaptic processing of the olfactory input from the antennae occurs in the antennal lobe, the functional equivalent of the olfactory bulb in vertebrates. Key components of the olfactory network in the antennal lobe are two main types of neurons: the local interneurons and the projection (output) neurons. Both neuron types have different physiological tasks during olfactory processing, which accordingly require specialized functional phenotypes. This review gives an overview of important cell type-specific functional properties of the different types of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana, which is an experimental system that has elucidated many important biophysical and cellular bases of intrinsic physiological properties of these neurons.


Asunto(s)
Encéfalo/fisiología , Odorantes , Vías Olfatorias/fisiología , Animales , Cucarachas
18.
Curr Biol ; 30(23): 4579-4593.e7, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32976803

RESUMEN

Locomotion requires energy, yet animals need to increase locomotion in order to find and consume food in energy-deprived states. While such energy homeostatic coordination suggests brain origin, whether the central melanocortin 4 receptor (Mc4r) system directly modulates locomotion through motor circuits is unknown. Here, we report that hypothalamic Pomc neurons in zebrafish and mice have long-range projections into spinal cord regions harboring Mc4r-expressing V2a interneurons, crucial components of the premotor networks. Furthermore, in zebrafish, Mc4r activation decreases the excitability of spinal V2a neurons as well as swimming and foraging, while systemic or V2a neuron-specific blockage of Mc4r promotes locomotion. In contrast, in mice, electrophysiological recordings revealed that two-thirds of V2a neurons in lamina X are excited by the Mc4r agonist α-MSH, and acute inhibition of Mc4r signaling reduces locomotor activity. In addition, we found other Mc4r neurons in spinal lamina X that are inhibited by α-MSH, which is in line with previous studies in rodents where Mc4r agonists reduced locomotor activity. Collectively, our studies identify spinal V2a interneurons as evolutionary conserved second-order neurons of the central Mc4r system, providing a direct anatomical and functional link between energy homeostasis and locomotor control systems. The net effects of this modulatory system on locomotor activity can vary between different vertebrate species and, possibly, even within one species. We discuss the biological sense of this phenomenon in light of the ambiguity of locomotion on energy balance and the different living conditions of the different species.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Interneuronas/metabolismo , Locomoción/fisiología , Proopiomelanocortina/metabolismo , Médula Espinal/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Núcleo Arqueado del Hipotálamo/citología , Evolución Biológica , Fenómenos Electrofisiológicos/efectos de los fármacos , Ratones , Modelos Animales , Red Nerviosa/fisiología , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 4/agonistas , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Pez Cebra , Proteínas de Pez Cebra/agonistas , Proteínas de Pez Cebra/genética
19.
Cell Metab ; 31(6): 1189-1205.e13, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32433922

RESUMEN

Astrocytes represent central regulators of brain glucose metabolism and neuronal function. They have recently been shown to adapt their function in response to alterations in nutritional state through responding to the energy state-sensing hormones leptin and insulin. Here, we demonstrate that glucagon-like peptide (GLP)-1 inhibits glucose uptake and promotes ß-oxidation in cultured astrocytes. Conversely, postnatal GLP-1 receptor (GLP-1R) deletion in glial fibrillary acidic protein (GFAP)-expressing astrocytes impairs astrocyte mitochondrial integrity and activates an integrated stress response with enhanced fibroblast growth factor (FGF)21 production and increased brain glucose uptake. Accordingly, central neutralization of FGF21 or astrocyte-specific FGF21 inactivation abrogates the improvements in glucose tolerance and learning in mice lacking GLP-1R expression in astrocytes. Collectively, these experiments reveal a role for astrocyte GLP-1R signaling in maintaining mitochondrial integrity, and lack of GLP-1R signaling mounts an adaptive stress response resulting in an improvement of systemic glucose homeostasis and memory formation.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Mitocondrias/metabolismo , Animales , Femenino , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Transducción de Señal
20.
Front Cell Neurosci ; 14: 86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317940

RESUMEN

Most stroke studies dealing with functional deficits and assessing stem cell therapy produce extensive hemispheric damage and can be seen as a model for severe clinical strokes. However, mild strokes have a better prospect for functional recovery. Recently, anatomic and behavioral changes have been reported for distal occlusion of the middle cerebral artery (MCA), generating a well-circumscribed and small cortical lesion, which can thus be proposed as mild to moderate cortical stroke. Using this cortical stroke model of moderate severity in the nude mouse, we have studied the functional networks with resting-state functional magnetic resonance imaging (fMRI) for 12 weeks following stroke induction. Further, human neural stem cells (hNSCs) were implanted adjacent to the ischemic lesion, and the stable graft vitality was monitored with bioluminescence imaging (BLI). Differentiation of the grafted neural stem cells was analyzed by immunohistochemistry and by patch-clamp electrophysiology. Following stroke induction, we found a pronounced and continuously rising hypersynchronicity of the sensorimotor networks including both hemispheres, in contrast to the severe stroke filament model where profound reduction of the functional connectivity had been reported by us earlier. The vitality of grafted neural stem cells remained stable throughout the whole 12 weeks observation period. In the stem cell treated animals, functional connectivity did not show hypersynchronicity but was globally slightly reduced below baseline at 2 weeks post-stroke, normalizing thereafter completely. Our resting-state fMRI (rsfMRI) studies on cortical stroke reveal for the first time a hypersynchronicity of the functional brain networks. This hypersynchronicity appears as a hallmark of mild cortical strokes, in contrast to severe strokes with striatal involvement where exclusively hyposynchronicity has been reported. The effect of the stem cell graft was an early and persistent normalization of the functional sensorimotor networks across the whole brain. These novel functional results may help interpret future outcome investigations after stroke and demonstrate the highly promising potential of stem cell treatment for functional outcome improvement after stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...