Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38520304

The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ±â€…18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.


Some grass species have a symbiotic relationship with an endophytic fungus that produces toxic ergot alkaloids which have detrimental impacts on herbivores. Ergot alkaloids have a significant impact on livestock production causing annual loss to the livestock industry that likely exceeds $1 billion. Effective treatment for this toxicosis is still needed. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. We found that 5-hydroxytryptophan administration has the potential to normalize both circulating serotonin and feed intake reduced by ergot alkaloid consumption.


Ergot Alkaloids , Serotonin , Cattle , Animals , 5-Hydroxytryptophan , Hydroxyindoleacetic Acid , Ergot Alkaloids/toxicity , Eating , Animal Feed/analysis
2.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38502533

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ±â€…9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.


Fescue has become the dominant cool-season perennial grass in the southeastern region of the United States and is also found in other countries. Endophytes from a plant­fungus symbiotic relationship produce toxic alkaloids that have caused significant annual economic losses to the livestock industry. Treatments to alleviate this toxicosis are still demanded. This study evaluates the infusion of the dopamine precursor, levodopa (L-DOPA), to mitigate the toxicosis caused by ergot alkaloids. When L-DOPA was infused, eating duration increased and the decrease in feed intake caused by ergot alkaloids was less severe. Additionally, circulating dopamine and glucose clearance increased with L-DOPA. These results suggest that L-DOPA has the potential to aid in the mitigation of the toxicosis caused by ergot alkaloids.


Ergot Alkaloids , Festuca , Lolium , Cattle , Animals , Ergot Alkaloids/toxicity , Levodopa , Dopamine , Prolactin , Eating , Endophytes , Norepinephrine , Animal Feed/analysis , Epinephrine , Glucose
3.
BMC Vet Res ; 19(1): 208, 2023 Oct 16.
Article En | MEDLINE | ID: mdl-37845710

BACKGROUND: Ruminant livestock experience a number of challenges, including high concentrate diets, weaning and transport, which can increase their risk of disorders such as ruminal acidosis, and the associated inflammation of the ruminal epithelium. Cannabidiol (CBD), a phytochemical from hemp (Cannabis sativa), is a promising target as a therapy for gastrointestinal inflammation, and may be extremely valuable as either a treatment or prophylactic. However, the effects of CBD in the the ruminant gastrointestinal tract have not been explored, in part due to the restrictions on feeding hemp to livestock. Therefore, the objective of this study was to investigate the immunomodulatory properties of CBD using a model of inflammation in primary ruminal epithelial cells (REC). In addition, CBD dose was evaluated for possible cytotoxic effects. RESULTS: Negative effects on cell viability were not observed when REC were exposed to 10 µM CBD. However, when the dose was increased to 50 µM for 24 h, there was a significant cytotoxic effect. When 10 µM CBD was added to culture media as treatment for inflammation induced with lipopolysaccharide (LPS), expression of genes encoding for pro-inflammatory cytokine IL1B was less compared to LPS exposure alone, and CBD resulted in a down-regulation of IL6. As a pre-treatment, prior to LPS exposure, REC had decreased expression of IL6 and CXCL10 while CBD was present in the media, but not when it was removed prior to addition of LPS. CONCLUSIONS: Results suggest that CBD may reduce cytokine transcription both during LPS-induced inflammation and when used preventatively, although these effects were dependent on its continued presence in the culture media. Overall, these experiments provide evidence of an immunomodulatory effect by CBD during a pro-inflammatory response in primary REC in culture.


Cannabidiol , Cannabis , Cattle Diseases , Inflammation , Cattle , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Lipopolysaccharides/pharmacology , Interleukin-6 , Inflammation/drug therapy , Inflammation/veterinary , Cytokines/genetics , Epithelial Cells , Ruminants , Culture Media , Cattle Diseases/drug therapy
4.
J Nutr ; 153(10): 2854-2867, 2023 Oct.
Article En | MEDLINE | ID: mdl-37573014

BACKGROUND: Increasing luminal carbohydrate flow decreases pancreatic α-amylase activity but can increase jejunal maltase activity, suggesting that regulation of carbohydrase activity is perhaps uncoordinated in response to luminal carbohydrate flow. Increasing luminal casein flow increases pancreatic α-amylase activity in cattle, and exogenous glucagon-like peptide 2 (GLP-2) has been shown to increase small intestinal α-glucosidase activity in nonruminants. OBJECTIVES: The objective was to evaluate the effects of postruminal casein infusion, exogenous GLP-2, or their combination on endogenous pancreatic and small intestinal carbohydrase activity in cattle postruminally infused with starch. METHODS: Holstein steers [n = 24; 250 ± 23 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW. Steers received subcutaneous injections in 2 equal portions daily of excipient (0.5% bovine serum albumin) or 100 µg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for tissue collection. Data were analyzed using the MIXED procedure of SAS version 9.4 (SAS Institute Inc.). RESULTS: Postruminal casein infusion increased (P ≤ 0.03) pancreatic mass by 12.6%, total pancreatic α-amylase activity by 50%, and postruminal starch disappearance from 96.7% to 99.3%. Exogenous GLP-2 increased (P < 0.01) total small intestinal and mucosal mass by 1.2 kg and 896 g, respectively. Relative to control, GLP-2 and casein + GLP-2 increased (P = 0.04) total small intestinal α-glucosidase activity by 83.5%. Total small intestinal maltase, isomaltase, and glucoamylase activity was 90%, 100%, and 66.7% greater for GLP-2 and casein + GLP-2 steers compared with control. CONCLUSIONS: Casein increased pancreatic α-amylase activity, GLP-2 increased small intestinal α-glucosidase activity, and the combination of casein and GLP-2 increased both pancreatic α-amylase activity and small intestinal α-glucosidase activity. This novel approach provides an in vivo model to evaluate effects of increasing endogenous carbohydrase activity on small intestinal starch digestion.

5.
Front Vet Sci ; 10: 1104361, 2023.
Article En | MEDLINE | ID: mdl-37143501

Introduction: Holstein steers (n = 32) were used to determine if the ergot analog, bromocriptine decreases muscle protein synthesis through inhibitory action on the mTOR pathway via a direct effect on signal proteins, and if these negative effects can be alleviated with anabolic agents. Methods: Steers were treated with intramuscular administration of bromocriptine (vehicle or 0.1 mg/kg BW) and a subdermal commercial steroidal implant containing trenbolone acetate (TBA) and estradiol 17ß (with or without), in a 2×2 factorial design. During the 35 day experiment, intake was restricted to 1.5 times maintenance energy requirement. On days 27 through 32, steers were moved to metabolism stalls for urine collection, and whole-body protein turnover was determined using a single pulse dose of [15N] glycine into the jugular vein on day 28. On day 35, skeletal muscle samples were collected before (basal state) and 60 min after (stimulated state) an i.v. glucose challenge (0.25 g glucose/kg). Blood samples were collected at regular intervals before and after glucose infusion for determination of circulating concentrations of glucose and insulin. Results: Bromocriptine reduced insulin and glucose clearance following the glucose challenge, indicating decreased insulin sensitivity and possible disruption of glucose uptake and metabolism in the skeletal muscle. Conversely, analysis of whole-body protein turnover demonstrated that bromocriptine does not appear to affect protein synthesis or urea excretion. Western immunoblot analysis of skeletal muscle showed that it did not affect abundance of S6K1 or 4E-BP1, so bromocriptine does not appear to inhibit activation of the mTOR pathway or protein synthesis. Estradiol/TBA implant decreased urea excretion and protein turnover but had no effect on protein synthesis, suggesting that steroidal implants promote protein accretion through unchanged rates of synthesis and decreased degradation, even in the presence of bromocriptine, resulting in improved daily gains. Implanted steers likely experienced increased IGF-1 signaling, but downstream activation of mTOR, S6K and 4E-BP1, and thus increased protein synthesis did not occur as expected. Conclusions: Overall, this data suggests that bromocriptine does not have a negative impact on muscle protein synthetic pathways independent of DMI.

6.
J Anim Sci ; 1012023 Jan 03.
Article En | MEDLINE | ID: mdl-37004204

Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 µM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 µM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 µM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 µM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 µM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 µM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 µM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.


Consumption of ergot alkaloids found in endophyte-infected tall fescue can lead to symptoms of fescue toxicosis, such as vasoconstriction, in ruminant livestock species. Ergovaline is one of the primary ergot alkaloids responsible for causing vasoconstriction when toxic varieties of fescue are consumed. It has been previously shown that ergovaline causes vasoconstriction by interacting with vascular serotonin receptors in cattle and sheep. Depending on when ergovaline exposure occurs, ergovaline can function as an agonist (stimulant) or antagonist (inhibitor) of vascular activity. However, it is unclear how the duration of ergovaline exposure affects vasoconstriction caused by serotonin. Experiments were conducted using the bovine mesenteric artery and mesenteric vein that were exposed to either 0, 0.01, or 0.1 µM ergovaline for 24-h prior to serotonin additions or simultaneously with serotonin additions. Maximum contractile response data were recorded using a multimyograph system and normalized as a percentage of the contractile response produced by the reference compound, KCl. The results of these experiments demonstrated that the duration of ergovaline exposure influences serotonin-mediated vasoconstriction and possibly vasorelaxation in bovine mesenteric vasculature. If ergovaline and serotonin exposure occur simultaneously, ergovaline can act as an agonist or antagonist of serotonin-mediated vasoconstriction. If serotonin exposure occurs after prior ergovaline exposure, serotonin can induce vasorelaxation of blood vessels. Understanding how complex interactions between ergovaline and serotonin occur and affect vascular function will aid in the development of strategies to mitigate sustained vasoconstriction caused during fescue toxicosis.


Ergot Alkaloids , Serotonin , Cattle , Animals , Serotonin/pharmacology , Ergot Alkaloids/toxicity , Ergotamines/toxicity , Receptors, Serotonin , Animal Feed/analysis
7.
Front Vet Sci ; 9: 889888, 2022.
Article En | MEDLINE | ID: mdl-35711802

The objectives of the study were to study the effects of the synthetic ergot alkaloid (EA), bromocriptine, on glucose and lipid metabolism in insulin dysregulated (ID, n = 7) and non-ID (n = 8) mares. Horses were individually housed and fed timothy grass hay and two daily concentrate meals so that the total diet provided 120% of daily DE requirements for maintenance. All horses were given intramuscular bromocriptine injections (0.1 mg/kg BW) every 3 days for 14 days. Before and after 14 days of treatment horses underwent a combined glucose-insulin tolerance test (CGIT) to assess insulin sensitivity and a feed challenge (1 g starch/kg BW from whole oats) to evaluate postprandial glycemic and insulinemic responses. ID horses had higher basal plasma concentrations of insulin (P = 0.01) and triglycerides (P = 0.02), and lower concentrations of adiponectin (P = 0.05) compared with non-ID horses. The CGIT response curve showed that ID horses had slower glucose clearance rates (P = 0.02) resulting in a longer time in positive phase (P = 0.03) and had higher insulin concentrations at 75 min (P = 0.0002) compared with non-ID horses. Glucose (P = 0.02) and insulin (P = 0.04) responses to the feeding challenge were lower in non-ID compared to ID horses. Regardless of insulin status, bromocriptine administration increased hay intake (P = 0.03) and decreased grain (P < 0.0001) and total DE (P = 0.0002) intake. Bromocriptine treatment decreased plasma prolactin (P = 0.0002) and cholesterol (P = 0.10) and increased (P = 0.02) adiponectin concentrations in all horses. Moreover, in both groups of horses, bromocriptine decreased glucose clearance rates (P = 0.02), increased time in positive phase (P = 0.04) of the CGIT and increased insulin concentrations at 75 min (P = 0.001). The postprandial glycemic (P = 0.01) and insulinemic (P = 0.001) response following the oats meal was lower after bromocriptine treatment in all horses. In conclusion, in contrast to data in humans and rodents, bromocriptine treatment reduced insulin sensitivity in all horses, regardless of their insulin status. These results indicate that the physiological effects of EA might be different in horses compared to other species. Moreover, because bromocriptine shares a high degree of homology with natural EA, further investigation is warranted in horses grazing endophyte-infected grasses.

8.
Toxins (Basel) ; 14(3)2022 03 03.
Article En | MEDLINE | ID: mdl-35324683

For many years, ergot alkaloids have been considered both a problem to be mitigated and a potential medical cure [...].


Ergot Alkaloids , Ergot Alkaloids/toxicity , Heterocyclic Compounds, 4 or More Rings
9.
PLoS One ; 16(7): e0253754, 2021.
Article En | MEDLINE | ID: mdl-34288928

Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are introduced into the diet, decreasing pH and disturbing the microbial ecology of the rumen. Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense), mitigates changes associated with starch fermentation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1), or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller's grains ad libitum. The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d 1-4: 40% corn; d 5-8: 70% cracked corn). Samples for pH and enumeration were taken on the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting bacteria (APB) were enumerated. Enumeration data were normalized by log transformation and data were analyzed by repeated measures ANOVA using the MIXED procedure of SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulolytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiological, and fermentative changes associated with SARA challenge (P < 0.05). Similar results were also observed with MON (P < 0.05). These results indicate that BCA may be an effective alternative to antibiotics for mitigating SARA in cattle production systems.


Acidosis/drug therapy , Animal Feed , Cattle Diseases/drug therapy , Cattle/microbiology , Dietary Fiber , Gastrointestinal Contents/microbiology , Gastrointestinal Microbiome/drug effects , Genistein/therapeutic use , Rumen/microbiology , Acidosis/microbiology , Animals , Bacteria/drug effects , Bacteria/isolation & purification , Bacterial Load , Cattle Diseases/microbiology , Cellulose/metabolism , Deoxyglucose/pharmacology , Dietary Carbohydrates/metabolism , Dietary Fiber/metabolism , Dietary Proteins/metabolism , Fermentation , Genistein/pharmacology , Hydrogen-Ion Concentration , Ionophores/pharmacology , Male , Random Allocation , Silage , Starch/metabolism
10.
Toxins (Basel) ; 13(3)2021 03 09.
Article En | MEDLINE | ID: mdl-33803203

Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to fescue endophyte type: 1) endophyte-infected ergot alkaloid producing tall fescue (E+) or 2) novel endophyte-infected, non-toxic tall fescue (NOV) within maternal (A|A, n = 38 and G|G, n = 37) DRD2 genotype to examine changes in cow/calf performance and milk production during late gestation and early lactation. Grazing E+ fescue pastures during late gestation reduced cow body weight gain but did not alter calf birth weight compared to NOV. Milk production and calf ADG during the first 30 day of lactation were lower for E+ than NOV. The calving rate was reduced, but not calving interval for E+ cows. The adjusted 205-day weight of calves was lower in those grazing E+ with their dams compared to NOV. There were no interactions between DRD2 genotype and fescue endophyte type indicating that genotype was not associated with response to E+ fescue in this study. Overall, grazing NOV tall fescue pastures rather than E+ during critical stages of production improved cow gain during late gestation, calving rate, early milk production and calf growth.


Endophytes/metabolism , Ergot Alkaloids/metabolism , Lactation , Lolium/microbiology , Polymorphism, Single Nucleotide , Receptors, Dopamine D2/genetics , Animal Feed/microbiology , Animals , Animals, Suckling , Birth Weight , Cattle , Endophytes/growth & development , Ergot Alkaloids/toxicity , Female , Food Microbiology , Genotype , Gestational Age , Gestational Weight Gain , Herbivory , Pregnancy , Receptors, Dopamine D2/metabolism , Time Factors
11.
Toxins (Basel) ; 14(1)2021 12 23.
Article En | MEDLINE | ID: mdl-35050986

Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate the effects of 24 h exposure to 5-HT and ergot alkaloids (ergovaline, ERV), two assays were conducted. The first assay determined the half-maximal inhibitory concentration (IC50) following the 24 h pre-exposure period, while the second assay evaluated the effect of IC50 concentrations of 5-HT and ERV either individually or in combination. There was an interaction between previous exposure to 5-HT and ERV. Previous exposure to 5-HT at the IC50 concentration of 7.57 × 10-7 M reduced the contractile response by more than 50% of control, while the exposure to ERV at IC50 dose of 1.57 × 10-10 M tended to decrease (p = 0.081) vessel contractility with a response higher than 50% of control. The 24 h previous exposure to both 5-HT and ERV did not potentiate the inhibitory response of blood vessels in comparison with incubation with each compound alone. These results suggest receptor competition between 5-HT and ERV. More studies are necessary to determine the potential of 5-HT to treat toxicosis caused by ergot alkaloids.


Ergotamines/toxicity , Mycotoxins/toxicity , Serotonin/pharmacology , Vasoconstriction/drug effects , Animals , Cattle , Female
12.
Transl Anim Sci ; 4(4): txaa197, 2020 Oct.
Article En | MEDLINE | ID: mdl-33269340

Gestating ewes consuming ergot alkaloids, from endophyte-infected (E+) tall fescue seed, suffer from intrauterine growth restriction and produce smaller lambs. Arginine (Arg) supplementation has been shown to increase birth weight and oral citrulline (Cit) administration is reported to increase arginine concentrations. Two experiments were conducted to: 1) evaluate if oral supplementation with Cit or water, to ewes consuming E+ fescue seed, increases lamb birth weight and 2) determine the effectiveness of Cit and citrulline:malate as an oral drench and elevating circulating levels of Cit to determine levels and dose frequency. In experiment 1, gestating Suffolk ewes (n = 10) were assigned to one of two treatments [oral drench of citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline) or water (TOX)] to start on d 86 of gestation and continued until parturition. Ewes on CITM treatment had decreased (P < 0.05) plasma Arg and Cit concentrations during gestation. At birth, lambs from CITM ewes had reduced (P < 0.05) crude fat and total fat but did not differ (P > 0.05) in birth weight from lambs born to TOX ewes. In experiment 2, nonpregnant Suffolk ewes (n = 3) were assigned to either oral citrulline (CIT; 81 mg/kg/d), citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline), or water (CON) drench in a Latin Square design for a treatment period of 4 d with a washout period of 3 d. On d 4, blood samples were collected at 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 18 h post drench. Oral drenching of CIT and CITM increased (P < 0.0001) Cit concentrations within 2 h and levels remained elevated for 6 h. Apparent half-life of elimination for CIT and CITM were 8.484 and 10.392 h, respectively. Our results show that lamb birth weight was not altered with a single oral drench of citrulline-malate; however, lamb body composition was altered. The level and frequency of citrulline dosing may need to be greater in order to observe consistent elevation of Cit/Arg concentrations to determine its effectiveness in mitigating fescue toxicosis.

13.
Animals (Basel) ; 10(12)2020 Dec 03.
Article En | MEDLINE | ID: mdl-33287449

Endophyte-infected tall fescue (E+) produces ergovaline and ergovalinine, which are mycotoxins that act as dopamine agonists to suppress prolactin and induce vasoconstriction. The experiment was designed as a 3 × 2 × 2 factorial with DRD2 genotype (AA, AG, GG), fescue seed (endophyte-free, E- or endophyte-infected, E+), stage of gestation (MID, d (day) 35-85; LATE, d 86-parturition) and all interactions in the model. Pregnant Suffolk ewes (n = 60) were stratified by genotype and fed E+ or E- seed in a total mixed ration according to treatment assignment. Serum prolactin concentrations were lower (p < 0.05) in ewes fed E+ seed but did not differ by maternal DRD2 genotype or two-way interaction. Lamb birth weight was lower (p < 0.05) in ewes fed E+ seed in last trimester. Pre-weaning growth rate, milk production and total weaning weight was reduced (p < 0.05) in ewes fed E+ fescue seed during MID and LATE gestation. Ingestion of ergovaline/ergovalinine in last trimester reduces lamb birth weight; however, lamb growth rate, milk production and total weaning weight are reduced in all ewes fed E+ during mid and last trimester.

14.
Toxins (Basel) ; 12(12)2020 11 26.
Article En | MEDLINE | ID: mdl-33256042

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E-) tall fescue seed, with (P+) or without (P-) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p < 0.05). Pathways affected by treatments were related to amino acid and nucleic acid metabolism in both rumen fluid and serum (p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.


Isoflavones/administration & dosage , Metabolome/drug effects , Rumen/drug effects , Serum/metabolism , Amino Acids/metabolism , Animal Feed/microbiology , Animal Feed/poisoning , Animals , Cattle , Chromatography, Liquid , Dietary Supplements , Endophytes/physiology , Ergot Alkaloids/toxicity , Ergotism/drug therapy , Festuca/microbiology , Festuca/poisoning , Nucleic Acids/metabolism , Plant Poisoning/veterinary , Seeds/poisoning , Tandem Mass Spectrometry
15.
J Anim Sci ; 98(12)2020 Dec 01.
Article En | MEDLINE | ID: mdl-33188392

Ergot alkaloids can interact with several serotonin (5-hydroxytryptamine [5-HT]) receptors provoking many physiological responses. However, it is unknown whether ergot alkaloid consumption influences 5-HT or its metabolites. Thus, two experiments were performed to evaluate the effect of ergot alkaloid feeding on 5-HT metabolism. In exp. 1, 12 Holstein steers (260 ± 3 kg body weight [BW]) were used in a completely randomized design. The treatments were the dietary concentration of ergovaline: 0, 0.862, and 1.282 mg/kg of diet. The steers were fed ad libitum, kept in light and temperature cycles mimicking the summer, and had blood sampled before and 15 d after receiving the treatments. The consumption of ergot alkaloids provoked a linear decrease (P = 0.004) in serum 5-HT. However, serum 5-hydroxytryptophan and 5-hydroxyindoleacetic acid did not change (P > 0.05) between treatments. In exp. 2, four ruminally cannulated Holstein steers (318 ± 3 kg BW) were used in a 4 × 4 Latin square design to examine the difference between seed sources on 5-HT metabolism. Treatments were: control-tall fescue seeds free of ergovaline, KY 32 seeds (L42-16-2K32); 5Way-endophyte-infected seeds, 5 way (L152-11-1739); KY31-endophyte-infected seeds, KY 31 (M164-16-SOS); and Millennium-endophyte-infected seeds, 3rd Millennium (L108-11-76). The endophyte-infected seed treatments were all adjusted to provide an ergovaline dosage of 15 µg/kg BW. The basal diet provided 1.5-fold the net energy requirement for maintenance. The seed treatments were dosed directly into the rumen before feeding. The experiment lasted 84 d and was divided into four periods. In each period, the steers received seeds for 7 d followed by a 14-d washout. Blood samples were collected on day 0 (baseline) and day 7 for evaluating the treatment response in each period. A 24 h urine collection was performed on day 7. Similar to exp. 1, serum 5-HT decreased (P = 0.008) with the consumption of all endophyte-infected seed treatments. However, there was no difference (P > 0.05) between the infected seeds. The urinary excretion of 5-hydroxyindoleacetic acid in the urine was not affected (P > 0.05) by the presence of ergot alkaloids. In conclusion, the consumption of ergot alkaloids decreases serum 5-HT with no difference between the source of endophyte-infected seeds in the bovine.


Ergot Alkaloids , Festuca , Animal Feed/analysis , Animals , Cattle , Poaceae , Rumen , Serotonin
16.
Front Vet Sci ; 7: 615, 2020.
Article En | MEDLINE | ID: mdl-33062652

Holstein steers (n = 16) were used to determine if a synthetic alkaloid, bromocriptine, would alter the transcriptome of the small intestine and adjacent mesenteric adipose. On d 0, steers were assigned to one of two treatments: control (CON; saline only) or bromocriptine (BROMO; 0.1 mg/kg BW bromocriptine mesylate injected intramuscularly every 3 d for 30 d). Steers were slaughtered and midpoint sections of jejunal epithelium and associated mesenteric fat were collected for RNA isolation. Transcriptome analysis was completed via RNA-Seq to determine if BROMO differed compared with CON within intestinal epithelium or mesenteric adipose mRNA isolates. Differential expression thresholds were set at a significant P-value (P < 0.05) and a fold change ≥ 1.5. Only two genes were differentially expressed within the intestinal epithelium but there were 20 differentially expressed genes in the mesenteric adipose tissue (six up regulated and 14 down regulated). Functions related to cell movement, cell development, cell growth and proliferation, cell death, and overall cellular function and maintenance were the top five functional molecular categories influenced by BROMO treatment within the intestinal epithelium. The top molecular categories within mesenteric adipose were antigen presentation, protein synthesis, cell death, cell movement, and cell to cell signaling and interaction. In conclusion, BROMO treatment influenced the intestinal epithelium and mesenteric adipose transcriptome and identified genes and pathways influential to the effects associated with alkaloid exposure which are important to beef production.

17.
Animals (Basel) ; 10(10)2020 Oct 12.
Article En | MEDLINE | ID: mdl-33053893

Weaned lambs (n = 82), born to ewes fed endophyte-free (E-) or endophyte-infected (E+; 1.77 mg hd-1 d-1 ergovaline + ergovalinine) tall fescue seed from d 35 to 85 of gestation (MID) and/or d 86 of gestation to parturition (LATE), were used to examine how ergot alkaloid exposure during fetal development altered subsequent puberty attainment or carcass quality. Lambs were weaned at 75 d of age and separated by sex to assess puberty in ewe lambs (n = 39) and to evaluate growth, carcass and meat quality in wethers (n = 43). Data were analyzed with maternal fescue treatment, stage of gestation, and two-way interaction in the model. Age at puberty tended (P = 0.06) to be longer for ewe lambs born to dams fed E+ fescue during LATE gestation versus those fed E-. Post-weaning average daily gain tended to be higher (P = 0.07) for wether lambs born to dams fed E+ fescue seed during MID gestation compared to E-. Exposure to ergot alkaloids during fetal growth altered (P < 0.10) longissimus muscle weight and color, lipid deposition, fatty acid composition, and shear force values of semimembranosus muscle in wether lambs. These results indicate that exposure to ergot alkaloids in utero does alter subsequent post-weaning puberty attainment and body composition in offspring.

18.
PLoS One ; 15(3): e0229200, 2020.
Article En | MEDLINE | ID: mdl-32168321

Biochanin A, an isoflavone present in the pasture legume red clover (Trifloium pratense L.), alters fermentation in the rumen of cattle and other ruminants. Biochanin A inhibits hyper-ammonia-producing bacteria and promotes cellulolytic bacteria and fiber catalysis in vitro and ex vivo. Consequently, biochanin A supplementation improves weight gain in grazing steers. Red clover contains biologically active isoflavones that may act synergistically. Therefore, the objective was to evaluate the effect of two levels of red clover hay on growth performance and the microbial community in growing steers grazing mixed grass pastures. A grazing experiment was conducted over 2 early growing seasons (2016 and 2017) with 36 cross-bred steers and twelve rumen-fistulated, growing Holstein steers for evaluation of average daily gain and rumen microbiota, respectively. Steers were blocked by body weight and assigned to pastures with one of four treatments: 1) pasture only, 2) pasture + dry distillers' grains (DDG), 3) pasture + DDG + low level of red clover hay (~15% red clover diet), or 4) pasture + DDG + high level of red clover hay (~30% red clover diet). DDG were added to treatments to meet protein requirements and to balance total protein supplementation between treatments. All supplementation strategies (DDG ± red clover hay) increased average daily gains in comparison to pasture-only controls (P < 0.05), with a low level of red clover supplementation being the most effective (+0.17 kg d-1 > DDG only controls; P < 0.05). Similarly, hyper-ammonia-producing bacteria inhibition (10-100-fold; P < 0.05), fiber catalysis (+10-25%; P < 0.05) and short chain fatty acid concentrations were greatest with the low red clover supplement (+~25%; P < 0.05). These results provide evidence that lower levels or red clover supplementation may be optimal for maximizing overall microbial community function and animal performance in grazing steers.


Gastrointestinal Microbiome/drug effects , Isoflavones/administration & dosage , Rumen/microbiology , Trifolium/chemistry , Weight Gain , Animal Feed/analysis , Animals , Bacteria/classification , Bacteria/drug effects , Body Weight/drug effects , Catalysis , Cattle , Dose-Response Relationship, Drug , Hybridization, Genetic , Isoflavones/pharmacology , Nerve Fibers, Myelinated/chemistry , Plant Extracts/chemistry , Rumen/drug effects
19.
J Anim Sci ; 98(1)2020 Jan 01.
Article En | MEDLINE | ID: mdl-31850497

Fescue toxicosis is problematic for growing steers, causing lower DMI and productivity when fed endophyte-infected (E+) tall fescue. A complete understanding of underlying mechanisms of how fescue toxicosis affects growing steers is lacking. Therefore, the overall objective of this multiexperiment study was to determine whether ruminally dosed ergovaline (ERV) affects rumen motility, rumen contents, and eating patterns. In Exp. 1, an 8-h period to assess ruminal motility began 4 h after feeding by monitoring pressure changes using a wireless system for 21 d. Eight ruminally cannulated steers (283 kg BW) were pair fed with alfalfa cubes (1.5 × NEm) and assigned to endophyte free (E-; 0 µg ERV/kg BW/d) or E+ treatment (20 µg ERV/kg BW/d). Overall, E+ steers had more frequent rumen contractions (Seed P = 0.05 and day of feeding P = 0.02). On days 7 to 9, both treatments showed lower frequencies and E- steers had greater amplitude of contractions (P < 0.001) that corresponded with decreased DMI. In Exp. 2, steers remained in pairs assigned in Exp. 1 (322 kg BW), but reversed seed treatments while increasing ERV levels (titrated 0, 5, 10, 15, and 20 µg ERV/kg BW/d over 57 d). There were no differences between E- and E+ for frequency (P = 0.137) or amplitude of contractions (P = 0.951), but increasing ERV dosage, decreased frequency (P = 0.018) and amplitude (P = 0.005), coinciding with lower DMI. In Exp. 3, 8 steers (589 kg) were pair fed and ruminally dosed 15 µg ERV/kg BW/d, and rumen motility data were collected for 21 d. E- steers showed higher amplitude and lower frequency of contractions than E+ steers with seed (P < 0.001), day (P < 0.001), and seed × day (P < 0.04) effects, but rumen fill was not different between E- and E+ (P > 0.29). Serum prolactin concentrations were lower in E+ steers in Exp. 1 to 3. Eating patterns of pair-fed E- and E+ steers were relatively slower in E+ than E- (Exp. 4) by measuring every 2 h across 24 h. Number of meals were higher in E+ than E- steers, but meal duration and meal size were not different between treatments. Rumen content (DM%) tended to be higher in E+ than in E- when steers were fed once a day (P = 0.07), but there was no difference for rumen content (DM%) when E- and E+ steers were fed 12 times a day (P = 0.13). These results suggest the changes in rumen fill associated with fescue toxicosis may be driven more by changes in feeding behavior and eating pattern rather than by changes in motility.


Ergotamines/adverse effects , Feeding Behavior/drug effects , Festuca/chemistry , Plant Poisoning/veterinary , Animal Feed/analysis , Animals , Cattle , Digestion , Eating , Endophytes , Male , Medicago sativa/microbiology , Prolactin , Random Allocation , Seeds/microbiology
20.
J Anim Sci ; 97(7): 3153-3168, 2019 Jul 02.
Article En | MEDLINE | ID: mdl-31051033

The objective of this study was to assess how exposure to ergot alkaloids during 2 stages of gestation alters fetal growth, muscle fiber formation, and miRNA expression. Pregnant ewes (n = 36; BW = 83.26 ± 8.14 kg; 4/group; 9 groups) were used in a 2 × 2 factorial arrangement with 2 tall fescue seed treatments [endophyte-infected (E+) vs. endophyte-free (E-)] fed during 2 stages of gestation (MID, days 35 to 85 vs. LATE, days 86 to 133), which created 4 possible treatments (E-/E-, E+/E-, E-/E+, or E+/E+). Ewes were individually fed a total mixed ration containing E+ or E- fescue seed according to treatment assignment. Terminal surgeries were conducted on day 133 of gestation for the collection of fetal measurements and muscle samples. Data were analyzed as a 2 × 2 factorial with fescue treatment, stage of gestation, and 2-way interaction as fixed effects. Fetuses exposed to E+ seed during LATE gestation had reduced (P = 0.0020) fetal BW by 10% compared with E- fetuses; however, fetal body weight did not differ (P = 0.41) with E+ exposure during MID gestation. Fetuses from ewes fed E+ seed during MID and LATE gestation tended to have smaller (P = 0.058) kidney weights compared with E- fetuses. Liver weight was larger (P = 0.0069) in fetuses fed E- during LATE gestation compared with E+. Fetal brain weight did not differ by fescue treatment fed during MID (P = 0.36) or LATE (P = 0.40) gestation. The percentage of brain to empty body weight (EBW) was greater (P = 0.0048) in fetuses from ewes fed E+ fescue seed during LATE gestation, which is indicative of intrauterine growth restriction (IUGR). Primary muscle fiber number was lower (P = 0.0005) in semitendinosus (STN) of fetuses exposed to E+ during MID and/or LATE gestation compared with E-/E-. miRNA sequencing showed differential expression (P < 0.010) of 6 novel miRNAs including bta-miR-652_R+1, mdo-miR-22-3p, bta-miR-1277_R-1, ppy-miR-133a_L+1_1ss5TG, hsa-miR-129-1-3p, and ssc-miR-615 in fetal STN muscle. These miRNA are associated with glucose transport, insulin signaling, intracellular ATP, hypertension, or adipogenesis. This work supports the hypothesis that E+ tall fescue seed fed during late gestation reduces fetal weight and causes asymmetrical growth, which is indicative of IUGR. Changes in primary fiber number and miRNA of STN indicate that exposure to E+ fescue fed during MID and LATE gestation alters fetal muscle development that may affect postnatal muscle growth and meat quality.


Endophytes/physiology , Ergot Alkaloids/toxicity , Festuca/chemistry , MicroRNAs/genetics , Sheep/physiology , Transcriptome/drug effects , Animals , Brain/drug effects , Brain/growth & development , Ergotamines/toxicity , Female , Festuca/microbiology , Fetal Development/drug effects , Fetal Weight/drug effects , Muscle Fibers, Skeletal/drug effects , Placentation , Pregnancy , Seeds/chemistry , Seeds/microbiology , Sheep/growth & development
...