Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585884

RESUMEN

Spermatogonial stem cell (SSC) acquisition of meiotogenetic state during puberty to produce genetically diverse gametes is blocked by drugs collectively referred as 'puberty blocker' (PB). Investigating the impact of PB on juvenile SSC state and function is challenging due to limited tissue access and clinical data. Herein, we report largest clinically annotated juvenile testicular biorepository with all children with gender dysphoria on chronic PB treatment highlighting shift in pediatric patient demography in US. At the tissue level, we report mild-to-severe sex gland atrophy in PB treated children. We developed most extensive integrated single-cell RNA dataset to date (>100K single cells; 25 patients), merging both public and novel (52 month PB-treated) datasets, alongside innovative computational approach tailed for germ cells and evaluated the impact of PB and aging on SSC. We report novel constitutional ranges for each testicular cell type across the entire age spectrum, distinct effects of treatments on prepubertal vs adult SSC, presence of spermatogenic epithelial cells exhibiting post-meiotic-state, irrespective of age, puberty status, or PB treatment. Further, we defined distinct effects of PB and aging on testicular cell lineage composition, and SSC meiotogenetic state and function. Using single cell data from prepubertal and young adult, we were able to accurately predict sexual maturity based both on overall cell type proportions, as well as on gene expression patterns within each major cell type. Applying these models to a PB-treated patient that they appeared pre-pubertal across the entire tissue. This combined with the noted gland atrophy and abnormalities from the histology data raise a potential concern regarding the complete 'reversibility' and reproductive fitness of SSC. The biorepository, data, and research approach presented in this study provide unique opportunity to explore the impact of PB on testicular reproductive health.

2.
Cell Res ; 24(1): 3-4, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24100350

RESUMEN

Several studies have demonstrated the clonal transmission of distinct differentiation and self-renewal properties in hematopoietic stem cells during the regeneration of blood production in transplanted recipients. A recent publication now identifies Vwf expression as a discriminating marker of a hematopoietic stem cell state that is primed for platelet production in response to thrombopoietin, but also subject to developmental and other, as yet undefined, cues.


Asunto(s)
Plaquetas/citología , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA