Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1271368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908833

RESUMEN

Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.

2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685921

RESUMEN

Various stresses can affect the quality and yield of crops, including vegetables. In this study, CRISPR/Cas9 technology was employed to examine the role of the ELONGATED HYPOCOTYL 5 (HY5) gene in influencing the growth of Chinese cabbage (Brassica rapa). Single guide RNAs (sgRNAs) were designed to target the HY5 gene, and deep-sequencing analysis confirmed the induction of mutations in the bZIP domain of the gene. To investigate the response of Chinese cabbage to endoplasmic reticulum (ER) stress, plants were treated with tunicamycin (TM). Both wild-type and hy5 mutant plants showed increased growth inhibition with increasing TM concentration. However, the hy5 mutant plants displayed less severe growth inhibition compared to the wild type. Using nitroblue tetrazolium (NBT) and 3,3'-diaminobenzidine (DAB) staining methods, we determined the amount of reactive oxygen species (ROS) produced under ER stress conditions, and found that the hy5 mutant plants generated lower levels of ROS compared to the wild type. Under ER stress conditions, the hy5 mutant plants exhibited lower expression levels of UPR- and cell death-related genes than the wild type. These results indicate that CRISPR/Cas9-mediated editing of the HY5 gene can mitigate growth inhibition in Chinese cabbage under stresses, improving the quality and yield of crops.


Asunto(s)
Brassica rapa , Brassica rapa/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Hipocótilo , ARN Guía de Sistemas CRISPR-Cas , Especies Reactivas de Oxígeno , Productos Agrícolas , Tunicamicina
3.
Biochem Biophys Res Commun ; 670: 94-101, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37290287

RESUMEN

Protein phosphatase 2A (PP2A) is a key regulator of plant growth and development, but its role in the endoplasmic reticulum (ER) stress response remains elusive. In this study, we investigated the function of PP2A under ER stress using loss-of-function mutants of ROOTS CURL of NAPHTHYLPHTHALAMIC ACID1 (RCN1), a regulatory A1 subunit isoform of Arabidopsis PP2A. RCN1 mutants (rcn1-1 and rcn1-2) exhibited reduced sensitivity to tunicamycin (TM), an inhibitor of N-linked glycosylation and inducer of unfolded protein response (UPR) gene expression, resulting in less severe effects compared to wild-type plants (Ws-2 and Col-0). TM negatively impacted PP2A activity in Col-0 plants but did not significantly affect rcn1-2 plants. Additionally, TM treatment did not influence the transcription levels of the PP2AA1(RCN1), 2, and 3 genes in Col-0 plants. Cantharidin, a PP2A inhibitor, exacerbated growth defects in rcn1 plants and alleviated TM-induced growth inhibition in Ws-2 and Col-0 plants. Furthermore, cantharidin treatment mitigated TM hypersensitivity in ire1a&b and bzip28&60 mutants. These findings suggest that PP2A activity is essential for an efficient UPR in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteína Fosfatasa 2 , Respuesta de Proteína Desplegada , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cantaridina/farmacología , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Mutación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo
4.
Front Plant Sci ; 12: 761064, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804097

RESUMEN

Alpha-1,6-mannosyl-glycoprotein 2-ß-N-acetylglucosaminyltransferase [EC 2.4.1.143, N-acetylglucosaminyltransferase II (GnTII)] catalyzes the transfer of N-acetylglucosamine (GlcNAc) residue from the nucleotide sugar donor UDP-GlcNAc to the α1,6-mannose residue of the di-antennary N-glycan acceptor GlcNAc(Xyl)Man3(Fuc)GlcNAc2 in the Golgi apparatus. Although the formation of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan is known to be associated with GnTII activity in Arabidopsis thaliana, its physiological significance is still not fully understood in plants. To address the physiological importance of the GlcNAc2(Xyl)Man3(Fuc)GlcNAc2 N-glycan, we examined the phenotypic effects of loss-of-function mutations in GnTII in the presence and absence of stress, and responsiveness to phytohormones. Prolonged stress induced by tunicamycin (TM) or sodium chloride (NaCl) treatment increased GnTII expression in wild-type Arabidopsis (ecotype Col-0) but caused severe developmental damage in GnTII loss-of-function mutants (gnt2-1 and gnt2-2). The absence of the 6-arm GlcNAc residue in the N-glycans in gnt2-1 facilitated the TM-induced unfolded protein response, accelerated dark-induced leaf senescence, and reduced cytokinin signaling, as well as susceptibility to cytokinin-induced root growth inhibition. Furthermore, gnt2-1 and gnt2-2 seedlings exhibited enhanced N-1-naphthylphthalamic acid-induced inhibition of tropic growth and development. Thus, GnTII's promotion of the 6-arm GlcNAc addition to N-glycans is important for plant growth and development under stress conditions, possibly via affecting glycoprotein folding and/or distribution.

5.
New Phytol ; 212(1): 108-22, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27241276

RESUMEN

In plants, α1,3-fucosyltransferase (FucT) catalyzes the transfer of fucose from GDP-fucose to asparagine-linked GlcNAc of the N-glycan core in the medial Golgi. To explore the physiological significance of this processing, we isolated two Oryza sativa (rice) mutants (fuct-1 and fuct-2) with loss of FucT function. Biochemical analyses of the N-glycan structure confirmed that α1,3-fucose is missing from the N-glycans of allelic fuct-1 and fuct-2. Compared with the wild-type cv Kitaake, fuct-1 displayed a larger tiller angle, shorter internode and panicle lengths, and decreased grain filling as well as an increase in chalky grains with abnormal shape. The mutant allele fuct-2 gave rise to similar developmental abnormalities, although they were milder than those of fuct-1. Restoration of a normal tiller angle in fuct-1 by complementation demonstrated that the phenotype is caused by the loss of FucT function. Both fuct-1 and fuct-2 plants exhibited reduced gravitropic responses. Expression of the genes involved in tiller and leaf angle control was also affected in the mutants. We demonstrate that reduced basipetal auxin transport and low auxin accumulation at the base of the shoot in fuct-1 account for both the reduced gravitropic response and the increased tiller angle.


Asunto(s)
Fucosa/metabolismo , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Oryza/metabolismo , Oryza/fisiología , Polisacáridos/metabolismo , Alelos , Transporte Biológico , ADN Bacteriano/genética , Fucosa/química , Genes de Plantas , Prueba de Complementación Genética , Mutación con Pérdida de Función/genética , Magnaporthe/fisiología , Mutagénesis Insercional/genética , Mutación/genética , Oryza/genética , Oryza/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/fisiología , Polisacáridos/química , Reproducción , Semillas/metabolismo
6.
J Biol Chem ; 290(27): 16560-72, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26001781

RESUMEN

The most abundant N-glycan in plants is the paucimannosidic N-glycan with core ß1,2-xylose and α1,3-fucose residues (Man3XylFuc(GlcNAc)2). Here, we report a mechanism in Arabidopsis thaliana that efficiently produces the largest N-glycan in plants. Genetic and biochemical evidence indicates that the addition of the 6-arm ß1,2-GlcNAc residue by N-acetylglucosaminyltransferase II (GnTII) is less effective than additions of the core ß1,2-xylose and α1,3-fucose residues by XylT, FucTA, and FucTB in Arabidopsis. Furthermore, analysis of gnt2 mutant and 35S:GnTII transgenic plants shows that the addition of the 6-arm non-reducing GlcNAc residue to the common N-glycan acceptor GlcNAcMan3(GlcNAc)2 inhibits additions of the core ß1,2-xylose and α1,3-fucose residues. Our findings indicate that plants limit the rate of the addition of the 6-arm GlcNAc residue to the common N-glycan acceptor as a mechanism to facilitate formation of the prevalent N-glycans with Man3XylFuc(GlcNAc)2 and (GlcNAc)2Man3XylFuc(GlcNAc)2 structures.


Asunto(s)
Acetilglucosamina/metabolismo , Arabidopsis/metabolismo , Polisacáridos/biosíntesis , Arabidopsis/química , Arabidopsis/genética , Secuencia de Carbohidratos , Datos de Secuencia Molecular , Polisacáridos/química
7.
Mol Cells ; 35(3): 202-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23456296

RESUMEN

In plants, transgenes with inverted repeats are used to induce efficient RNA silencing, which is also frequently induced by highly transcribed sense transgenes. RNA silencing induced by sense transgenes is dependent on RNA-dependent RNA polymerase 6 (RDR6), which converts single-stranded (ss) RNA into double-stranded (ds) RNA. By contrast, it has been proposed that RNA silencing induced by self-complementary hairpin RNA (hpRNA) does not require RDR6, because the hpRNA can directly fold back on itself to form dsRNA. However, it is unclear whether RDR6 plays a role in hpRNA-induced RNA silencing by amplifying dsRNA to spread RNA silencing within the plant. To address the efficiency of hpRNA-induced RNA silencing in the presence or absence of RDR6, Wild type (WT, Col-0) and rdr6-11 Arabidopsis thaliana lines expressing green fluorescent protein (GFP) were generated and transformed with a GFP-RNA interference (RNAi) construct. Whereas most GFP-RNAi-transformed WT lines exhibited almost complete silencing of GFP expression in the T1 generation, various levels of GFP expression remained among the GFP-RNAi-transformed rdr6-11 lines. Homozygous expression of GFP-RNAi in the T3 generation was not sufficient to induce complete GFP silencing in several rdr6-11 lines. Our results indicate that RDR6 is required for efficient hpRNA-induced RNA silencing in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/enzimología , Regulación de la Expresión Génica de las Plantas , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Polimerasa Dependiente del ARN/fisiología , Plantones/enzimología , Arabidopsis/genética , Genes de Plantas , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Secuencias Invertidas Repetidas , Mutación , Fenotipo , Plantones/genética
8.
Plant J ; 73(6): 966-79, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23199012

RESUMEN

To explore the physiological significance of N-glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N-acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N-glycan maturation and accumulated high-mannose N-glycans. Phenotypic analyses revealed that gnt1 shows defective post-seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark-induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A-type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N-glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.


Asunto(s)
Celulosa/biosíntesis , Citocininas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Secuencia de Carbohidratos , Pared Celular/química , Pared Celular/genética , Oscuridad , Datos de Secuencia Molecular , Mutación , N-Acetilglucosaminiltransferasas/metabolismo , Oryza/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Polisacáridos/química , Semillas/genética
9.
Biochem Biophys Res Commun ; 408(1): 78-83, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21458419

RESUMEN

Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. ß-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/µg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Semillas/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Glucuronidasa/genética , Datos de Secuencia Molecular , Oryza/efectos de los fármacos , Iniciación de la Cadena Peptídica Traduccional , Plantas Modificadas Genéticamente/efectos de los fármacos , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...