Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
BMC Public Health ; 24(1): 1122, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654184

There are reports of poor working conditions for early and mid-career academics (EMCAs) in universities, however, empirical data using validated tools are scarce. We conducted an online, cross-sectional survey using validated tools to assess workplace satisfaction, exposure to workplace abuse, and mental health. Participants included employees of medical and health faculties of two of the largest Australian universities, surveyed between October 2020 and January 2021.Overall, 284 participants responded. Many reported job insecurity: half (50.7%) working on contracts with less than one remaining year. Workloads were considerable, with 89.5% of participants working overtime and 54.8% reporting burnout. Workplace abuse in the forms of bullying (46.6%), sexual harassment (25.3%), sexism (49.8%) and racism (22.5%) were commonly reported. Clinically significant symptoms of depression (28.0%), anxiety (21.7%) and suicidal ideation or self-harm (13.6%) were reported; with a higher prevalence among those working more overtime, and those exposed to workplace abuse. Priorities include providing a stable and safe workplace, increasing accountability and transparency in addressing workplace abuse, and supporting professional development.In summary, EMCAs in our study were commonly exposed to precarious employment conditions and workplace abuse. Our findings provide empirical evidence on where universities and funding bodies should direct resources and change organisational risk factors, to improve workplace culture.


Organizational Culture , Workplace , Humans , Cross-Sectional Studies , Male , Female , Adult , Australia/epidemiology , Workplace/psychology , Workplace/statistics & numerical data , Middle Aged , Universities , Mental Health/statistics & numerical data , Bullying/psychology , Bullying/statistics & numerical data , Surveys and Questionnaires , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Job Satisfaction , Sexual Harassment/statistics & numerical data , Sexual Harassment/psychology
2.
J Immunol Methods ; 528: 113651, 2024 May.
Article En | MEDLINE | ID: mdl-38417671

Premature lymphocytes develop into non-autoreactive, mature naïve CD4+ or CD8+ T cells in the thymus before entering the circulation. However, in-depth characterization of human thymocyte development remains challenging due to limited availability of human thymus samples and the fragile nature of thymocyte populations. Thymocytes often do not survive cryopreservation and thawing procedures, especially the fragile CD4+CD8+ double positive population. It is generally recommended to use fresh human thymus tissue on the day of excision to avoid any biases in thymocyte composition. This hampers the possibility to perform multiple experiments on the same thymus sample. To establish how the thymocyte viability and composition can be maintained, we compared two thymocyte isolation methods used for human and/or mice thymi, three cryopreservation methods in combination with our most gentle thawing technique. Based on our findings we established that fresh human thymi remain viable in cold storage for up to two days post-surgery without compromising thymocyte composition. Thymocytes can be cryopreserved if required, although the CD4+CD8+ double positive populations may be reduced. Our study provides thoroughly optimized methods to study human thymocyte development over a considerable time-frame post-surgery.


CD8-Positive T-Lymphocytes , Thymocytes , Mice , Animals , Humans , Thymus Gland , Cell Differentiation
3.
Nat Commun ; 14(1): 6990, 2023 11 01.
Article En | MEDLINE | ID: mdl-37914685

There is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the A2AR receptor. Understanding of the mechanism by which A2AR is regulated has been hindered by difficulty in identifying the cell types that express A2AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an A2AR eGFP reporter mouse is developed, enabling the expression of A2AR during ongoing anti-tumor immune responses to be assessed. This reveals that A2AR is highly expressed on all tumor-infiltrating lymphocyte subsets including Natural Killer (NK) cells, NKT cells, γδ T cells, conventional CD4+ and CD8+ T lymphocytes and on a MHCIIhiCD86hi subset of type 2 conventional dendritic cells. In response to PD-L1 blockade, the emergence of PD-1+A2AR- cells correlates with successful therapeutic responses, whilst IL-18 is identified as a cytokine that potently upregulates A2AR and synergizes with A2AR deficiency to improve anti-tumor immunity. These studies provide insight into the biology of A2AR in the context of anti-tumor immunity and reveals potential combination immunotherapy approaches.


Neoplasms , Animals , Mice , Cytokines/metabolism , Immunity , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/genetics , Neoplasms/metabolism , Tumor Microenvironment
4.
J Immunol ; 211(4): 633-647, 2023 08 15.
Article En | MEDLINE | ID: mdl-37449888

NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.


CD8-Positive T-Lymphocytes , Cytokines , Granzymes , Humans , Cytokines/metabolism , Granzymes/metabolism , Killer Cells, Natural , Receptors, Antigen, T-Cell/metabolism
5.
Sci Immunol ; 8(85): eabo4365, 2023 07 21.
Article En | MEDLINE | ID: mdl-37450574

Vγ9Vδ2 T cells are the largest population of γδ T cells in adults and can play important roles in providing effective immunity against cancer and infection. Many studies have suggested that peripheral Vγ9Vδ2 T cells are derived from the fetal liver and thymus and that the postnatal thymus plays little role in the development of these cells. More recent evidence suggested that these cells may also develop postnatally in the thymus. Here, we used high-dimensional flow cytometry, transcriptomic analysis, functional assays, and precursor-product experiments to define the development pathway of Vγ9Vδ2 T cells in the postnatal thymus. We identify three distinct stages of development for Vγ9Vδ2 T cells in the postnatal thymus that are defined by the progressive acquisition of functional potential and major changes in the expression of transcription factors, chemokines, and other surface markers. Furthermore, our analysis of donor-matched thymus and blood revealed that the molecular requirements for the development of functional Vγ9Vδ2 T cells are delivered predominantly by the postnatal thymus and not in the periphery. Tbet and Eomes, which are required for IFN-γ and TNFα expression, are up-regulated as Vγ9Vδ2 T cells mature in the thymus, and mature thymic Vγ9Vδ2 T cells rapidly express high levels of these cytokines after stimulation. Similarly, the postnatal thymus programs Vγ9Vδ2 T cells to express the cytolytic molecules, perforin, granzyme A, and granzyme K. This study provides a greater understanding of how Vγ9Vδ2 T cells develop in humans and may lead to opportunities to manipulate these cells to treat human diseases.


Receptors, Antigen, T-Cell, gamma-delta , T-Lymphocyte Subsets , Adult , Humans , Thymus Gland , Gene Expression Profiling
6.
Mucosal Immunol ; 16(4): 446-461, 2023 08.
Article En | MEDLINE | ID: mdl-37182737

Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.


Mucosal-Associated Invariant T Cells , Natural Killer T-Cells , Mice , Animals , Receptors, Antigen, T-Cell, alpha-beta , Thymus Gland , Receptors, Antigen, T-Cell, gamma-delta
7.
JCI Insight ; 8(7)2023 04 10.
Article En | MEDLINE | ID: mdl-37036008

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


COVID-19 , Pregnancy , Female , Humans , SARS-CoV-2 , Killer Cells, Natural , CD8-Positive T-Lymphocytes , Antibodies
8.
Cell Death Dis ; 14(2): 111, 2023 02 11.
Article En | MEDLINE | ID: mdl-36774342

Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.


Mucosal-Associated Invariant T Cells , Humans , Necrosis/metabolism , Mucosal-Associated Invariant T Cells/metabolism , Cell Death , Liver/metabolism , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
9.
Trends Immunol ; 44(3): 159-161, 2023 03.
Article En | MEDLINE | ID: mdl-36754745

Tumors can evade conventional T cell recognition by rendering the HLA class I antigen presentation system defective. In a recent study, de Vries et al. reveal γδ T cells as key contributors to the efficacy of immune checkpoint blockade (ICB) against HLA-I-silenced cancers, highlighting a novel layer of surveillance against immune escape by tumors.


Neoplasms , Humans , Histocompatibility Antigens Class I , T-Lymphocytes
10.
Nat Immunol ; 24(2): 211-212, 2023 Feb.
Article En | MEDLINE | ID: mdl-36631638
11.
Elife ; 112022 12 02.
Article En | MEDLINE | ID: mdl-36458691

Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector, and memory adaptive T cells have been well studied, less is known about the transcriptional regulation of different iNKT cell activation states. Here, using single-cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2, and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen-experienced iNKT cells.


Natural Killer T-Cells , Animals , Humans , Mice , Gene Expression Regulation , Lymphocyte Activation
12.
Nat Commun ; 13(1): 2774, 2022 05 19.
Article En | MEDLINE | ID: mdl-35589689

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


COVID-19 , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Immunoglobulin M , Respiratory System , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
14.
Nat Commun ; 12(1): 4746, 2021 08 06.
Article En | MEDLINE | ID: mdl-34362900

The function of MR1-restricted mucosal-associated invariant T (MAIT) cells in tumor immunity is unclear. Here we show that MAIT cell-deficient mice have enhanced NK cell-dependent control of metastatic B16F10 tumor growth relative to control mice. Analyses of this interplay in human tumor samples reveal that high expression of a MAIT cell gene signature negatively impacts the prognostic significance of NK cells. Paradoxically, pre-pulsing tumors with MAIT cell antigens, or activating MAIT cells in vivo, enhances anti-tumor immunity in B16F10 and E0771 mouse tumor models, including in the context of established metastasis. These effects are associated with enhanced NK cell responses and increased expression of both IFN-γ-dependent and inflammatory genes in NK cells. Importantly, activated human MAIT cells also promote the function of NK cells isolated from patient tumor samples. Our results thus describe an activation-dependent, MAIT cell-mediated regulation of NK cells, and suggest a potential therapeutic avenue for cancer treatment.


Immunity, Cellular , Killer Cells, Natural/immunology , Mucosal-Associated Invariant T Cells/immunology , Neoplasms/immunology , Animals , Antineoplastic Agents , Cell Line, Tumor , Cytokines , Histocompatibility Antigens Class I/genetics , Humans , Immunity , Mice , Mice, Inbred C57BL , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Metastasis , Neoplasms/pathology
15.
Res Sq ; 2021 Aug 26.
Article En | MEDLINE | ID: mdl-34462740

Although the respiratory tract is the primary site of SARS-CoV-2 infection and the ensuing immunopathology, respiratory immune responses are understudied and urgently needed to understand mechanisms underlying COVID-19 disease pathogenesis. We collected paired longitudinal blood and respiratory tract samples (endotracheal aspirate, sputum or pleural fluid) from hospitalized COVID-19 patients and non-COVID-19 controls. Cellular, humoral and cytokine responses were analysed and correlated with clinical data. SARS-CoV-2-specific IgM, IgG and IgA antibodies were detected using ELISA and multiplex assay in both the respiratory tract and blood of COVID-19 patients, although a higher receptor binding domain (RBD)-specific IgM and IgG seroconversion level was found in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples was detected only when high levels of RBD-specific antibodies were present. Strikingly, cytokine/chemokine levels and profiles greatly differed between respiratory samples and plasma, indicating that inflammation needs to be assessed in respiratory specimens for the accurate assessment of SARS-CoV-2 immunopathology. Diverse immune cell subsets were detected in respiratory samples, albeit dominated by neutrophils. Importantly, we also showed that dexamethasone and/or remdesivir treatment did not affect humoral responses in blood of COVID-19 patients. Overall, our study unveils stark differences in innate and adaptive immune responses between respiratory samples and blood and provides important insights into effect of drug therapy on immune responses in COVID-19 patients.

16.
J Exp Med ; 217(12)2020 12 07.
Article En | MEDLINE | ID: mdl-33147321

In this issue of JEM, Jouan et al. (https://doi.org/10.1084/jem.20200872) report the activation and skewed function of unconventional T cells in severe COVID-19 patients. This may reflect a role in COVID-19 immunity or pathogenesis and potentially identifies new therapeutic targets for this disease.


Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2
17.
Nat Rev Immunol ; 20(12): 756-770, 2020 12.
Article En | MEDLINE | ID: mdl-32581346

T cell lineages are defined by specialized functions and differential expression of surface antigens, cytokines and transcription factors. Conventional CD4+ and CD8+ T cells are the best studied of the T cell subsets, but 'unconventional' T cells have emerged as being more abundant and influential than has previously been appreciated. Key subsets of unconventional T cells include natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) cells and γδ T cells; collectively, these make up ~10% of circulating T cells, and often they are the majority of T cells in tissues such as the liver and gut mucosa. Defects and deficiencies in unconventional T cells are associated with autoimmunity, chronic inflammation and cancer, so it is important to understand how their development is regulated. In this Review, we describe the thymic development of NKT cells, MAIT cells and γδ T cells and highlight some of the key differences between conventional and unconventional T cell development.


T-Lymphocyte Subsets/immunology , Thymus Gland/immunology , Animals , Humans , Intestinal Mucosa/immunology , Liver/immunology
18.
J Immunol ; 204(5): 1119-1133, 2020 03 01.
Article En | MEDLINE | ID: mdl-31988181

Mucosal-associated invariant T (MAIT) cells are important for immune responses against microbial infections. Although known to undergo marked numerical changes with age in humans, our understanding of how MAIT cells are altered during different phases across the human life span is largely unknown. Although also abundant in the tissues, our study focuses on MAIT cell analyses in blood. Across the human life span, we show that naive-like MAIT cells in umbilical cord blood switch to a central/effector memory-like profile that is sustained into older age. Whereas low-grade levels of plasma cytokine/chemokine were apparent in older donors (>65 y old), surprisingly, they did not correlate with the ex vivo MAIT hyperinflammatory cytokine profile observed in older adults. Removal of MAIT cells from older individuals and an aged environment resulted in the reversal of the baseline effector molecule profile comparable with MAIT cells from younger adults. An upregulated basal inflammatory profile accounted for reduced Escherichia coli-specific responses in aged MAIT cells compared with their young adult counterparts when fold change in expression levels of GzmB, CD107a, IFN-γ, and TNF was examined. However, the magnitude of antimicrobial MR1-dependent activation remained as potent and polyfunctional as with younger adults. Paired TCRαß analyses of MAIT cells revealed large clonal expansions in older adults and tissues that rivalled, remarkably, the TCRαß repertoire diversity of virus-specific CD8+ T cells. These data suggest that MAIT cells in older individuals, although associated with large clonal TCRαß expansions and increased baseline inflammatory potential, demonstrate plasticity and provide potent antimicrobial immunity.


CD8-Positive T-Lymphocytes/immunology , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adult , Aged , Escherichia coli/immunology , Female , Granzymes/immunology , Humans , Interferon-gamma/immunology , Lysosomal-Associated Membrane Protein 1/immunology , Male , Middle Aged , Tumor Necrosis Factor-alpha/immunology , Viruses/immunology
19.
Curr Protoc Immunol ; 127(1): e89, 2019 12.
Article En | MEDLINE | ID: mdl-31763782

This unit describes the utility of various mouse models of infection and immunization for studying mucosal-associated invariant T (MAIT) cell immunity: MAIT cells can be isolated from the lungs (or from other tissues/organs) and then identified and characterized by flow cytometry using MR1 tetramers in combination with a range of antibodies. The response kinetics, cytokine profiles, and functional differentiation of lung MAIT cells are studied following infection with the bacterial pathogen Legionella longbeachae or Salmonella enterica Typhimurium or immunization with synthetic MAIT cell antigen plus Toll-like receptor agonist. MAIT cells enriched or expanded during the process can be used for further studies. A step-by-step protocol is provided for MAIT cell sorting and adoptive transfer. Mice can then be challenged and MAIT cells tracked and further examined. © 2019 by John Wiley & Sons, Inc.


Flow Cytometry , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/cytology , Mucosal-Associated Invariant T Cells/immunology , Animals , Female , Male , Mice , Mice, Inbred C57BL
20.
Nat Immunol ; 20(9): 1110-1128, 2019 09.
Article En | MEDLINE | ID: mdl-31406380

In recent years, a population of unconventional T cells called 'mucosal-associated invariant T cells' (MAIT cells) has captured the attention of immunologists and clinicians due to their abundance in humans, their involvement in a broad range of infectious and non-infectious diseases and their unusual specificity for microbial riboflavin-derivative antigens presented by the major histocompatibility complex (MHC) class I-like protein MR1. MAIT cells use a limited T cell antigen receptor (TCR) repertoire with public antigen specificities that are conserved across species. They can be activated by TCR-dependent and TCR-independent mechanisms and exhibit rapid, innate-like effector responses. Here we review evidence showing that MAIT cells are a key component of the immune system and discuss their basic biology, development, role in disease and immunotherapeutic potential.


Antigen Presentation/immunology , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Mucosal-Associated Invariant T Cells/immunology , Receptors, Antigen, T-Cell/immunology , Animals , Antigens/immunology , Disease Susceptibility/immunology , Humans , Lymphocyte Activation/immunology , Mice , Neoplasms/immunology
...