Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Plant J ; 105(1): 136-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33111398

RESUMEN

Grass cell walls have hydroxycinnamic acids attached to arabinosyl residues of arabinoxylan (AX), and certain BAHD acyltransferases are involved in their addition. In this study, we characterized one of these BAHD genes in the cell wall of the model grass Setaria viridis. RNAi silenced lines of S. viridis (SvBAHD05) presented a decrease of up to 42% of ester-linked p-coumarate (pCA) and 50% of pCA-arabinofuranosyl, across three generations. Biomass from SvBAHD05 silenced plants exhibited up to 32% increase in biomass saccharification after acid pre-treatment, with no change in total lignin. Molecular dynamics simulations suggested that SvBAHD05 is a p-coumaroyl coenzyme A transferase (PAT) mainly involved in the addition of pCA to the arabinofuranosyl residues of AX in Setaria. Thus, our results provide evidence of p-coumaroylation of AX promoted by SvBAHD05 acyltransferase in the cell wall of the model grass S. viridis. Furthermore, SvBAHD05 is a promising biotechnological target to engineer crops for improved biomass digestibility for biofuels, biorefineries and animal feeding.


Asunto(s)
Aciltransferasas/metabolismo , Ácidos Cumáricos/metabolismo , Setaria (Planta)/metabolismo , Xilanos/metabolismo , Biomasa , Pared Celular/metabolismo , Genes de Plantas , Redes y Vías Metabólicas , Polisacáridos/metabolismo , Setaria (Planta)/enzimología , Setaria (Planta)/genética
2.
Int J Mol Sci ; 20(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31071964

RESUMEN

The feasibility of thermography as a technique for plant screening aiming at drought-tolerance has been proven by its relationship with gas exchange, biomass, and yield. In this study, unlike most of the previous, thermography was applied for phenotyping contrasting maize genotypes whose classification for drought tolerance had already been established in the field. Our objective was to determine whether thermography-based classification would discriminate the maize genotypes in a similar way as the field selection in which just grain yield was taken into account as a criterion. We evaluated gas exchange, daily water consumption, leaf relative water content, aboveground biomass, and grain yield. Indeed, the screening of maize genotypes based on canopy temperature showed similar results to traditional methods. Nevertheless, canopy temperature only partially reflected gas exchange rates and daily water consumption in plants under drought. Part of the explanation may lie in the changes that drought had caused in plant leaves and canopy structure, altering absorption and dissipation of energy, photosynthesis, transpiration, and partitioning rates. Accordingly, although there was a negative relationship between grain yield and plant canopy temperature, it does not necessarily mean that plants whose canopies were maintained cooler under drought achieved the highest yield.


Asunto(s)
Sequías , Estrés Fisiológico/genética , Termografía/métodos , Zea mays/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Genotipo , Fotosíntesis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Temperatura , Agua/metabolismo , Zea mays/genética , Zea mays/crecimiento & desarrollo
3.
PLoS One ; 13(1): e0191081, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29324804

RESUMEN

Expansins refer to a family of closely related non-enzymatic proteins found in the plant cell wall that are involved in the cell wall loosening. In addition, expansins appear to be involved in different physiological and environmental responses in plants such as leaf and stem initiation and growth, stomata opening and closing, reproduction, ripening and stress tolerance. Sugarcane (Saccharum spp.) is one of the main crops grown worldwide. Lignocellulosic biomass from sugarcane is one of the most promising raw materials for the ethanol industry. However, the efficient use of lignocellulosic biomass requires the optimization of several steps, including the access of some enzymes to the hemicellulosic matrix. The addition of expansins in an enzymatic cocktail or their genetic manipulation could drastically improve the saccharification process of feedstock biomass by weakening the hydrogen bonds between polysaccharides present in plant cell walls. In this study, the expansin gene family in sugarcane was identified and characterized by in silico analysis. Ninety two putative expansins in sugarcane (SacEXPs) were categorized in three subfamilies after phylogenetic analysis. The expression profile of some expansin genes in leaves of sugarcane in different developmental stages was also investigated. This study intended to provide suitable expansin targets for genetic manipulation of sugarcane aiming at biomass and yield improvement.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Saccharum/genética , Biomasa , Enlace de Hidrógeno
4.
New Phytol ; 218(1): 81-93, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29315591

RESUMEN

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.


Asunto(s)
Biomasa , Pared Celular/metabolismo , Coenzima A Transferasas/genética , Ácidos Cumáricos/metabolismo , Genes de Plantas , Setaria (Planta)/enzimología , Setaria (Planta)/genética , Supresión Genética , Ácidos/metabolismo , Brachypodium/genética , Metabolismo de los Hidratos de Carbono , Coenzima A Transferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Hidrólisis , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Tamaño de los Órganos , Filogenia , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo , Transcriptoma/genética , Xilanos/metabolismo
5.
Front Plant Sci ; 8: 865, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642761

RESUMEN

Acidic soils are distributed worldwide, predominantly in tropical and subtropical areas, reaching around 50% of the arable soil. This type of soil strongly reduces crop production, mainly because of the presence of aluminum, which has its solubility increased at low pH levels. A well-known physiological mechanism used by plants to cope with Al stress involves activation of membrane transporters responsible for organic acid anions secretion from the root apex to the rhizosphere, which chelate Al, preventing its absorption by roots. In sorghum, a membrane transporter gene belonging to multidrug and toxic compound extrusion (MATE) family was identified and characterized as an aluminum-activated citrate transporter gene responsible for Al tolerance in this crop. Setaria viridis is an emerging model for C4 species and it is an important model to validate some genes for further C4 crops transformation, such as sugarcane, maize, and wheat. In the present work, Setaria viridis was used as a model plant to overexpress a newly identified MATE gene from Brachypodium distachyon (BdMATE), closely related to SbMATE, for aluminum tolerance assays. Transgenic S. viridis plants overexpressing a BdMATE presented an improved Al tolerance phenotype, characterized by sustained root growth and exclusion of aluminum from the root apex in transgenic plants, as confirmed by hematoxylin assay. In addition, transgenic plants showed higher root citrate exudation into the rhizosphere, suggesting that Al tolerance improvement in these plants could be related to the chelation of the metal by the organic acid anion. These results suggest that BdMATE gene can be used to transform C4 crops of economic importance with improved aluminum tolerance.

6.
Braz. arch. biol. technol ; Braz. arch. biol. technol;46(1): 1-6, Jan. 2003. ilus, graf
Artículo en Inglés | LILACS | ID: lil-334442

RESUMEN

Studies were carried out to optimize the conditions for transient gene expression through particle bombardment on Carrizo citrange (Citrus sinensis x Poncirus trifoliata) thin epicotyl sections. The best conditions for transient GUS expression were: M-25 tungsten particles, 1550 psi helium pressure, 9 cm distance between specimen and DNA/particle holder and culture of explants in a high osmolarity medium (0.2 M mannitol + 0.2 M sorbitol) 4 h prior and 20 h after bombardment. Under these conditions, an average of 102 blue spots per bombardment (20 explants/plate) were achieved. This protocol is currently being used for transformation of Carrizo citrange and sweet orange (Citrus sinensis)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA