Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1124305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909430

RESUMEN

Plant based natural products have been widely used as antibacterial and insect repellent agents globally. Because of growing resistance in bacterial plant pathogens and urban pests to current methods of control, combined with the long- and short-term negative impact of certain chemical controls in humans, non-target organisms, and the environment, finding alternative methods is necessary to prevent and/or mitigate losses caused by these pathogens and pests. The antibacterial and insect repellent activities of essential oils of novel cultivars of catnip (Nepeta cataria L. cv. CR9) and oregano (Origanum vulgare L. cv. Pierre) rich in the terpenes nepetalactone and carvacrol, respectively, were evaluated using the agar well diffusion assay and petri dish repellency assay. The essential oils exhibit moderate to high antibacterial activity against three plant pathogens, Pseudomonas cichorii, Pseudomonas syringae and Xanthomonas perforans of economic interest and the individual essential oils, their mixtures and carvacrol possess strong insect repellent activity against the common bed bug (Cimex lectularius L.), an urban pest of major significance to public health. In this study, the essential oils of catnip and oregano were determined to be promising candidates for further evaluation and development as antibacterial agents and plant-based insect repellents with applications in agriculture and urban pest management.

2.
PLoS One ; 8(10): e76487, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24098512

RESUMEN

Plants and animals have evolved a first line of defense response to pathogens called innate or basal immunity. While basal defenses in these organisms are well studied, there is almost a complete lack of understanding of such systems in fungal species, and more specifically, how they are able to detect and mount a defense response upon pathogen attack. Hence, the goal of the present study was to understand how fungi respond to biotic stress by assessing the transcriptional profile of the rice blast pathogen, Magnaporthe oryzae, when challenged with the bacterial antagonist Lysobacter enzymogenes. Based on microscopic observations of interactions between M. oryzae and wild-type L. enzymogenes strain C3, we selected early and intermediate stages represented by time-points of 3 and 9 hours post-inoculation, respectively, to evaluate the fungal transcriptome using RNA-seq. For comparative purposes, we also challenged the fungus with L. enzymogenes mutant strain DCA, previously demonstrated to be devoid of antifungal activity. A comparison of transcriptional data from fungal interactions with the wild-type bacterial strain C3 and the mutant strain DCA revealed 463 fungal genes that were down-regulated during attack by C3; of these genes, 100 were also found to be up-regulated during the interaction with DCA. Functional categorization of genes in this suite included those with roles in carbohydrate metabolism, cellular transport and stress response. One gene in this suite belongs to the CFEM-domain class of fungal proteins. Another CFEM class protein called PTH11 has been previously characterized, and we found that a deletion in this gene caused advanced lesion development by C3 compared to its growth on the wild-type fungus. We discuss the characterization of this suite of 100 genes with respect to their role in the fungal defense response.


Asunto(s)
Antibiosis , Proteínas Fúngicas/genética , Lysobacter/fisiología , Magnaporthe/genética , Magnaporthe/inmunología , Transcriptoma , Secuencias de Aminoácidos , Carga Bacteriana , Biología Computacional , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Mutación , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Tiempo
3.
Antonie Van Leeuwenhoek ; 103(6): 1271-80, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23529159

RESUMEN

Despite substantial interest investigating bacterial mechanisms of fungal growth inhibition, there are few methods available that quantify fungal cell death during direct interactions with bacteria. Here we describe an in vitro cell suspension assay using the tetrazolium salt MTT as a viability stain to assess direct effects of the bacterial antagonist Lysobacter enzymogenes on hyphal cells of the filamentous fungus Cryphonectria parasitica. The effects of bacterial cell density, fungal age and the physiological state of fungal mycelia on fungal cell viability were evaluated. As expected, increased bacterial cell density correlated with reduced fungal cell viability over time. Bacterial effects on fungal cell viability were influenced by both age and physiological state of the fungal mycelium. Cells obtained from 1-week-old mycelia lost viability faster compared with those from 2-week-old mycelia. Likewise, hyphal cells obtained from the lower layer of the mycelial pellicle lost viability more quickly compared with cells from the upper layer of the mycelial pellicle. Fungal cell viability was compared between interactions with L. enzymogenes wildtype strain C3 and a mutant strain, DCA, which was previously demonstrated to lack in vitro antifungal activity. Addition of antibiotics eliminated contributions to MTT-formazan production by bacterial cells, but not by fungal cells, demonstrating that mutant strain DCA had lost complete capacity to reduce fungal cell viability. These results indicate this cell suspension assay can be used to quantify bacterial effects on fungal cells, thus providing a reliable method to differentiate strains during bacterial/fungal interactions.


Asunto(s)
Antibiosis , Lysobacter/fisiología , Saccharomycetales/crecimiento & desarrollo , Antifúngicos , Recuento de Células , Viabilidad Microbiana , Sales de Tetrazolio , Tiazoles
4.
Environ Microbiol ; 15(3): 716-35, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23297839

RESUMEN

Gene expression profiles of the biological control strain Pseudomonas protegens Pf-5 inhabiting pea seed surfaces were revealed using a whole-genome oligonucleotide microarray. We identified genes expressed by Pf-5 under the control of two global regulators (GacA and RpoS) known to influence biological control and secondary metabolism. Transcript levels of 897 genes, including many with unknown functions as well as those for biofilm formation, cyclic diguanylate (c-di-GMP) signalling, iron homeostasis and secondary metabolism, were influenced by one or both regulators, providing evidence for expression of these genes by Pf-5 on seed surfaces. Comparison of the GacA and RpoS transcriptomes defined for Pf-5 grown on seed versus in broth culture overlapped, but most genes were regulated by GacA or RpoS under only one condition, likely due to differing levels of expression in the two conditions. We quantified secondary metabolites produced by Pf-5 and gacA and rpoS mutants on seed and in culture, and found that production profiles corresponded generally with biosynthetic gene expression profiles. Future studies evaluating biological control mechanisms can now focus on genes expressed by Pf-5 on seed surfaces, the habitat where the bacterium interacts with seed-infecting pathogens to suppress seedling diseases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/genética , Pseudomonas/metabolismo , Semillas/microbiología , Factor sigma/metabolismo , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Biopelículas , Transporte de Electrón/genética , Perfilación de la Expresión Génica , Hierro/metabolismo , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Pisum sativum/microbiología , Pseudomonas/enzimología , Regulón/genética , Factor sigma/genética , Transducción de Señal
5.
PLoS Genet ; 8(7): e1002784, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792073

RESUMEN

We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multilocus sequence analysis placed the strains in three sub-clades, which was reinforced by high levels of synteny, size of core genomes, and relatedness of orthologous genes between strains within a sub-clade. The heterogeneity of the P. fluorescens group was reflected in the large size of its pan-genome, which makes up approximately 54% of the pan-genome of the genus as a whole, and a core genome representing only 45-52% of the genome of any individual strain. We discovered genes for traits that were not known previously in the strains, including genes for the biosynthesis of the siderophores achromobactin and pseudomonine and the antibiotic 2-hexyl-5-propyl-alkylresorcinol; novel bacteriocins; type II, III, and VI secretion systems; and insect toxins. Certain gene clusters, such as those for two type III secretion systems, are present only in specific sub-clades, suggesting vertical inheritance. Almost all of the genes associated with multitrophic interactions map to genomic regions present in only a subset of the strains or unique to a specific strain. To explore the evolutionary origin of these genes, we mapped their distributions relative to the locations of mobile genetic elements and repetitive extragenic palindromic (REP) elements in each genome. The mobile genetic elements and many strain-specific genes fall into regions devoid of REP elements (i.e., REP deserts) and regions displaying atypical tri-nucleotide composition, possibly indicating relatively recent acquisition of these loci. Collectively, the results of this study highlight the enormous heterogeneity of the P. fluorescens group and the importance of the variable genome in tailoring individual strains to their specific lifestyles and functional repertoire.


Asunto(s)
Genoma Bacteriano , Plantas , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Bacteriocinas/genética , Heterogeneidad Genética , Variación Genética , Interacciones Huésped-Patógeno/genética , Insectos/genética , Familia de Multigenes , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/genética , Plantas/microbiología , Secuencias Repetitivas de Ácidos Nucleicos/genética , Resorcinoles/metabolismo
6.
Annu Rev Phytopathol ; 47: 63-82, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19400650

RESUMEN

A fundamental issue in biology is the question of how bacteria initiate and maintain pathogenic relationships with eukaryotic hosts. Despite billions of years of coexistence, far less is known about bacterial/fungal interactions than the equivalent associations formed by either of these types of microorganisms with higher eukaryotes. This review highlights recent research advances in the field of bacterial/fungal interactions, and provides examples of the various forms such interactions may assume, ranging from simple antagonism and parasitism to more intimate associations of pathogenesis and endosymbiosis. Information derived from the associations of bacteria and fungi in the context of natural and agronomic ecosystems is emphasized, including interactions observed from biological control systems, endosymbiotic relationships, diseases of cultivated mushrooms, and model systems that expand our understanding of human disease. The benefits of studying these systems at the molecular level are also emphasized.


Asunto(s)
Bacterias/patogenicidad , Fenómenos Fisiológicos Bacterianos , Hongos/fisiología , Interacciones Huésped-Parásitos/fisiología
7.
Environ Microbiol ; 11(1): 149-58, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18811645

RESUMEN

In this study, we investigated the role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. A mini-Tn5 transposon mutant of E. cloacae SLD1a-1, designated as 4E6, was isolated that had lost the ability to reduce Se(VI) to Se(0). Genetic analysis of mutant strain 4E6 showed that the transposon was inserted within a menD gene among a menFDHBCE gene cluster that encodes for proteins required for menaquinone biosynthesis. A group of E. coli K12 strains with single mutations in the menF, menD, menC and menE genes were tested for loss of selenate reduction activity. The results showed that E. coli K12 carrying a deletion of either the menD, menC or menE gene was unable to reduce selenate. Complementation using wild-type sequences of the E. cloacae SLD1a-1 menFDHBCE sequence successfully restored the selenate reduction activity in mutant strain 4E6, and E. coli K12 menD and menE mutants. Selenate reduction activity in 4E6 was also restored by chemical complementation using the menaquinone precursor compound 1,4-dihydroxy-2-nathphoic acid. The results of this work suggest that menaquinones are an important source of electrons for the selenate reductase, and are required for selenate reduction activity in E. cloacae SLD1a-1 and E. coli K12.


Asunto(s)
Liasas de Carbono-Carbono/genética , Coenzima A Ligasas/genética , Enterobacter cloacae/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Piruvato Oxidasa/genética , Compuestos de Selenio/metabolismo , Vitamina K 2/metabolismo , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Eliminación de Gen , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Naftoles/metabolismo , Oxidación-Reducción , Ácido Selénico , Análisis de Secuencia de ADN
10.
Environ Sci Technol ; 41(22): 7795-801, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18075090

RESUMEN

Microbial processes play an important role in the redox transformations of toxic selenium oxyanions. In this study, we employed chemical kinetic and molecular genetic techniques to investigate the mechanisms of Se(IV) and Se-(VI) reduction by the facultative anaerobe Enterobacter cloacae SLD1a-1. The rates of microbial selenium oxyanion reduction were measured as a function of initial selenium oxyanion concentration (0-1.0 mM) and temperature (10-40 degrees C), and mutagenesis studies were performed to identify the genes involved in the selenium oxyanion reduction pathway. The results indicate that Se(IV) reduction is significantly more rapid than the reduction of Se(VI). The kinetics of the reduction reactions were successfully quantified using the Michaelis-Menten kinetic equation. Both the rates of Se(VI) and Se(IV) reduction displayed strong temperature-dependence with E(a) values of 121 and 71.2 kJ/ mol, respectively. X-ray absorption near-edge spectra collected for the precipitates formed by Se(VI) and Se(IV) reduction confirmed the formation of Se(0). A miniTn5 transposon mutant of E. cloacae SLD1a-1 was isolated that had lost the ability to reduce Se(VI) but was not affected in Se(IV) reduction activity. Nucleotide sequence analysis revealed the transposon was inserted within a tatC gene, which encodes for a central protein in the twin arginine translocation system. Complementation by the wild-type tatC sequence restored the ability of mutant strains to reduce Se(VI). The results suggest that Se(VI) reduction activity is dependent on enzyme export across the cytoplasmic membrane and that reduction of Se(VI) and Se(IV) are catalyzed by different enzymatic systems.


Asunto(s)
Aniones , Enterobacter cloacae/metabolismo , Selenio/química , Absorciometría de Fotón , Aniones/química , Catálisis , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Sedimentos Geológicos/química , Concentración de Iones de Hidrógeno , Cinética , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Mutación , Oxidación-Reducción , Temperatura
11.
Phytopathology ; 97(2): 233-8, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18944380

RESUMEN

ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.

12.
Can J Microbiol ; 51(8): 719-23, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16234871

RESUMEN

A global regulator was previously identified in Lysobacter enzymogenes C3, which when mutated, resulted in strains that were greatly reduced in the expression of traits associated with fungal antagonism and devoid of biocontrol activity towards bipolaris leaf-spot of tall fescue and pythium damping-off of sugarbeet. A clp gene homologue belonging to the crp gene family was found to globally regulate enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes C3 (Kobayashi et al. 2005). Here, we report on the expansion of the biocontrol range of L. enzymogenes C3 to summer patch disease caused by Magnaporthe poae. The clp- mutant strain 5E4 was reduced in its ability to suppress summer patch disease compared with the wild-type strain C3 and was completely devoid of antifungal activity towards M. poae. Furthermore, cell suspensions of 5E4 were incapable of colonizing M. poae mycelium in a manner that was distinct for C3. Strain C3 demonstrated biosurfactant activity in cell suspensions and culture filtrates that was associated with absorption into the mycelium during the colonization process, whereas 5E4 did not. These results describe a novel interaction between bacteria and fungi that intimates a pathogenic relationship.


Asunto(s)
Antibiosis , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Magnaporthe/crecimiento & desarrollo , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Poa/microbiología , Xanthomonadaceae/crecimiento & desarrollo , Magnaporthe/patogenicidad , Pruebas de Sensibilidad Microbiana/métodos , Poaceae/microbiología , Xanthomonadaceae/enzimología , Xanthomonadaceae/genética
13.
Nat Biotechnol ; 23(7): 873-8, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15980861

RESUMEN

Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.


Asunto(s)
Genoma Bacteriano , Pseudomonas fluorescens/genética , Secuencia de Bases , Transporte Biológico/genética , Genes Bacterianos , Datos de Secuencia Molecular , Familia de Multigenes , Plantas/microbiología , Pseudomonas fluorescens/metabolismo , Análisis de Secuencia de ADN , Sideróforos/biosíntesis , Sideróforos/genética
14.
Appl Environ Microbiol ; 71(1): 261-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15640196

RESUMEN

Lysobacter enzymogenes strain C3, a biological control agent for plant diseases, produces multiple extracellular hydrolytic enzymes and displays antimicrobial activity against various fungal and oomycetous species. However, little is known about the regulation of these enzymes or their roles in antimicrobial activity and biocontrol. A study was undertaken to identify mutants of strain C3 affected in extracellular enzyme production and to evaluate their biocontrol efficacy. A single mini-Tn5-lacZ(1)-cat transposon mutant of L. enzymogenes strain C3 that was globally affected in a variety of phenotypes was isolated. In this mutant, 5E4, the activities of several extracellular lytic enzymes, gliding motility, and in vitro antimicrobial activity were reduced. Characterization of 5E4 indicated that the transposon inserted in a clp gene homologue belonging to the Crp gene family of regulators. Immediately downstream was a second open reading frame similar to that encoding acetyltransferases belonging to the Gcn5-related N-acetyltransferase superfamily, which reverse transcription-PCR confirmed was cotranscribed with clp. Chromosomal deletion mutants with mutations in clp and between clp and the acetyltransferase gene verified the 5E4 mutant phenotype. The clp gene was chromosomally inserted in mutant 5E4, resulting in complemented strain P1. All mutant phenotypes were restored in P1, although the gliding motility was observed to be excessive compared with that of the wild-type strain. clp mutant strains were significantly affected in biological control of pythium damping-off of sugar beet and bipolaris leaf spot of tall fescue, which was partially or fully restored in the complemented strain P1. These results indicate that clp is a global regulatory gene that controls biocontrol traits expressed by L. enzymogenes C3.


Asunto(s)
Endopeptidasa Clp/genética , Hongos/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Control Biológico de Vectores , Pythium/crecimiento & desarrollo , Xanthomonadaceae/enzimología , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Beta vulgaris/microbiología , Elementos Transponibles de ADN , Hongos/patogenicidad , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Pythium/patogenicidad , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Xanthomonadaceae/genética , Xanthomonadaceae/fisiología
15.
Phytopathology ; 95(6): 701-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18943787

RESUMEN

ABSTRACT Lysobacter enzymogenes produces extracellular lytic enzymes capable of degrading the cell walls of fungi and oomycetes. Many of these enzymes, including beta-1,3-glucanases, are thought to contribute to the biological control activity expressed by several strains of the species. L. enzymogenes strain C3 produces multiple extracellular beta-1,3-glucanases encoded by the gluA, gluB, and gluC genes. Analysis of the genes indicates they are homologous to previously characterized genes in the related strain N4-7, each sharing >95% amino acid sequence identity to their respective counterparts. The gluA and gluC gene products encode enzymes belonging to family 16 glycosyl hydrolases, whereas gluB encodes an enzyme belonging to family 64. Mutational analysis indicated that the three genes accounted for the total beta-1,3-glucanase activity detected in culture. Strain G123, mutated in all three glucanase genes, was reduced in its ability to grow in a minimal medium containing laminarin as a sole carbon source. Although strain G123 was not affected in antimicrobial activity toward Bipolaris sorokiniana or Pythium ultimum var. ultimum using in vitro assays, it was significantly reduced in biological control activity against Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. These results provide direct supportive evidence for the role of beta-1,3-glucanases in biocontrol activity of L. enzymogenes strain C3.

16.
Mycologia ; 96(3): 526-36, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-21148875

RESUMEN

Many wild and cultivated cool-season grass species are naturally infected with fungal endophytes of the genera Neotyphodium and Epichloë. These associations generally are considered mutualistic with the plants benefiting from reduced herbivory and the fungi benefiting from nutrients supplied by the plants. The fungi secrete proteins that might have a role in the interspecies symbiosis. In the interaction between Poa ampla Merr. and the endophyte Neotyphodium sp., a fungal chitinase was detected in the apoplastic protein fraction. The chitinase was also the major protein secreted in culture. Sequence analysis of the chitinase revealed it has a low level of amino acid sequence identity to other fungal chitinases and one of the conserved active site residues is altered. DNA gel-blot analysis indicated the chitinase was encoded by a single gene. Expression of similar chitinases also was detected in endophyte-infected tall fescue (Festuca arundinacea Schreb.), perennial ryegrass (Lolium perenne L.) and Chewings fescue (Festuca rubra L. subsp. fallax [Thuill] Nyman). This is the first report of an endophyte chitinase expressed in the infected host grass. As a secreted hydrolytic enzyme, the chitinase might have roles in the nutrition, growth or defense of the endophyte.

17.
J Bacteriol ; 185(15): 4362-70, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12867444

RESUMEN

Lysobacter enzymogenes strain N4-7 produces multiple biochemically distinct extracellular beta-1,3-glucanase activities. The gluA, gluB, and gluC genes, encoding enzymes with beta-1,3-glucanase activity, were identified by a reverse-genetics approach following internal amino acid sequence determination of beta-1,3-glucanase-active proteins partially purified from culture filtrates of strain N4-7. Analysis of gluA and gluC gene products indicates that they are members of family 16 glycoside hydrolases that have significant sequence identity to each other throughout the catalytic domain but that differ structurally by the presence of a family 6 carbohydrate-binding domain within the gluC product. Analysis of the gluB gene product indicates that it is a member of family 64 glycoside hydrolases. Expression of each gene in Escherichia coli resulted in the production of proteins with beta-1,3-glucanase activity. Biochemical analyses of the recombinant enzymes indicate that GluA and GluC exhibit maximal activity at pH 4.5 and 45 degrees C and that GluB is most active between pH 4.5 and 5.0 at 41 degrees C. Activity of recombinant proteins against various beta-1,3 glucan substrates indicates that GluA and GluC are most active against linear beta-1,3 glucans, while GluB is most active against the insoluble beta-1,3 glucan substrate zymosan A. These data suggest that the contribution of beta-1,3-glucanases to the biocontrol activity of L. enzymogenes may be due to complementary activities of these enzymes in the hydrolysis of beta-1,3 glucans from fungal cell walls.


Asunto(s)
Escherichia coli/genética , Gammaproteobacteria/enzimología , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/enzimología , Gammaproteobacteria/genética , Glucano Endo-1,3-beta-D-Glucosidasa/aislamiento & purificación , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
18.
Mol Plant Microbe Interact ; 15(8): 817-25, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12182339

RESUMEN

Strains of Enterobacter cloacae show promise as biocontrol agents for Pythium ultimum-induced damping-off on cucumber and other crops. E. cloacae A145 is a mini-Tn5 Km transposon mutant of strain 501R3 that was significantly reduced in suppression of damping-off on cucumber caused by P. ultimum. Strain A145 was deficient in colonization of cucumber, sunflower, and wheat seeds and significantly reduced in colonization of corn and cowpea seeds relative to strain 501R3. Populations of strain A145 were also significantly lower than those of strain 501R3 at all sampling times in cucumber, wheat, and sunflower rhizosphere. Populations of strain A145 were not detectable in any rhizosphere after 42 days, while populations of strain 501R3 remained at substantial levels throughout all experiments. Molecular characterization of strain A145 indicated mini-Tn5 Km was inserted in a region of the E. cloacae genome with a high degree of DNA and amino acid sequence similarity to rpiA, which encodes ribose-5-phosphate isomerase. In Escherichia coli, RpiA catalyzes the interconversion of ribose-5-phosphate and ribulose-5-phosphate and is a key enzyme in the pentose phosphate pathway. Ribose-5-phosphate isomerase activity in cell lysates from strain A145 was approximately 3.5% of that from strain 501R3. In addition, strain A145 was a ribose auxotroph, as expected for an rpiA mutant. Introduction of a 1.0-kb DNA fragment containing only the rpiA homologue into strain A145 restored ribose phosphate isomerase activity, prototrophy, seedling colonization, and disease suppression to levels similar to those associated with strain 501R3. Experiments reported here indicate a key role for rpiA and possibly the pentose phosphate pathway in suppression of damping-off and colonization of subterranean portions of plants by E. cloacae.


Asunto(s)
Cucumis sativus/microbiología , Enterobacter cloacae/genética , Genes Bacterianos , Mutación , Control Biológico de Vectores , Raíces de Plantas/microbiología , Pythium/patogenicidad , Semillas/microbiología , Cucumis sativus/genética , Datos de Secuencia Molecular
19.
Appl Environ Microbiol ; 68(3): 1047-54, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11872449

RESUMEN

A chitinase gene was cloned on a 2.8-kb DNA fragment from Stenotrophomonas maltophilia strain 34S1 by heterologous expression in Burkholderia cepacia. Sequence analysis of this fragment identified an open reading frame encoding a deduced protein of 700 amino acids. Removal of the signal peptide sequence resulted in a predicted protein that was 68 kDa in size. Analysis of the sequence indicated that the chitinase contained a catalytic domain belonging to family 18 of glycosyl hydrolases. Three putative binding domains, a chitin binding domain, a novel polycystic kidney disease (PKD) domain, and a fibronectin type III domain, were also identified within the sequence. Pairwise comparisons of each domain to the most closely related sequences found in database searches clearly demonstrated variation in gene sources and the species from which related sequences originated. A 51-kDa protein with chitinolytic activity was purified from culture filtrates of S. maltophilia strain 34S1 by hydrophobic interaction chromatography. Although the protein was significantly smaller than the size predicted from the sequence, the N-terminal sequence verified that the first 15 amino acids were identical to the deduced sequence of the mature protein encoded by chiA. Marker exchange mutagenesis of chiA resulted in mutant strain C5, which was devoid of chitinolytic activity and lacked the 51-kDa protein in culture filtrates. Strain C5 was also reduced in the ability to suppress summer patch disease on Kentucky bluegrass, supporting a role for the enzyme in the biocontrol activity of S. maltophilia.


Asunto(s)
Quitinasas/genética , Quitinasas/metabolismo , Magnaporthe , Control Biológico de Vectores , Poaceae/microbiología , Stenotrophomonas maltophilia/enzimología , Secuencia de Aminoácidos , Burkholderia cepacia/enzimología , Burkholderia cepacia/genética , Quitina/metabolismo , Clonación Molecular , Magnaporthe/crecimiento & desarrollo , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Stenotrophomonas maltophilia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...