Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Antimicrob Agents Chemother ; : e0127223, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904389

RESUMEN

Ivermectin, a broad-spectrum anti-parasitic drug, has been proposed as a novel vector control tool to reduce malaria transmission by mass drug administration. Ivermectin and some metabolites have mosquito-lethal effect, reducing Anopheles mosquito survival. Ivermectin inhibits liver stage development in a rodent malaria model, but no inhibition was observed in a primate malaria model or in a human malaria challenge trial. In the liver, cytochrome P450 3A4 and 3A5 enzymes metabolize ivermectin, which may impact drug efficacy. Thus, understanding ivermectin metabolism and assessing this impact on Plasmodium liver stage development is critical. Using primary human hepatocytes (PHHs), we characterized ivermectin metabolism and evaluated the efficacy of ivermectin and its primary metabolites M1 (3″-O-demethyl ivermectin) and M3 (4-hydroxymethyl ivermectin) against Plasmodium falciparum liver stages. Two different modes of ivermectin exposure were evaluated: prophylactic mode (days 0-3 post-infection) and curative mode (days 3-5 post-infection). We used two different PHH donors and modes to determine the inhibitory concentration (IC50) of ivermectin, M1, M3, and the known anti-malarial drug pyrimethamine, with IC50 values ranging from 1.391 to 14.44, 9.95-23.71, 4.767-8.384, and 0.9073-5.416 µM, respectively. In our PHH model, ivermectin and metabolites M1 and M3 demonstrated inhibitory activity against P. falciparum liver stages in curative treatment mode (days 3-5) and marginal activity in prophylactic treatment mode (days 0-3). Ivermectin had improved efficacy when co-administered with ketoconazole, a specific inhibitor of cytochrome P450 3A4 enzyme. Further studies should be performed to examine ivermectin liver stage efficacy when co-administered with CYP3A4 inhibitors and anti-malarial drugs to understand the pharmacokinetic and pharmacodynamic drug-drug interactions that enhance efficacy against human malaria parasites in vitro.

2.
Antimicrob Agents Chemother ; : e0018124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742896

RESUMEN

Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.

3.
Parasit Vectors ; 17(1): 224, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750608

RESUMEN

BACKGROUND: Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. Racemic ivermectin is composed of two components, namely a major component (> 80%; ivermectin B1a), which has an ethyl group at C-26, and a minor component (< 20%; ivermectin B1b), which has a methyl group at C-26. There is no difference between the efficacy of ivermectin B1a and ivermectin B1b efficacy in nematodes, but only ivermectin B1b has been reported to be lethal to snails. The ratios of ivermectin B1a and B1b ratios in ivermectin formulations and tablets can vary between manufacturers and batches. The mosquito-lethal effects of ivermectin B1a and ivermectin B1b have never been assessed. As novel ivermectin formulations are being developed for malaria control, it is important that the mosquito-lethal effects of individual ivermectin B1a and ivermectin B1b compounds be evaluated. METHODS: Racemic ivermectin, ivermectin B1a or ivermectin B1b, respectively, was mixed with human blood at various concentrations, blood-fed to Anopheles dirus sensu stricto and Anopheles minimus sensu stricto mosquitoes, and mortality was observed for 10 days. The ivermectin B1a and B1b ratios from commercially available racemic ivermectin and marketed tablets were assessed by liquid chromatography-mass spectrometry. RESULTS: The results revealed that neither the lethal concentrations that kills 50% (LC50) nor 90% (LC90) of mosquitoes differed between racemic ivermectin, ivermectin B1a or ivermectin B1b for An. dirus or An. minimus, confirming that the individual ivermectin components have equal mosquito-lethal effects. The relative ratios of ivermectin B1a and B1b derived from sourced racemic ivermectin powder were 98.84% and 1.16%, respectively, and the relative ratios for ivermectin B1a and B1b derived from human oral ivermectin tablets were 98.55% and 1.45%, respectively. CONCLUSIONS: The ratio of ivermectin B1a and B1b does not influence the Anopheles mosquito-lethal outcome, an ideal study result as the separation of ivermectin B1a and B1b components at scale is cost prohibitive. Thus, variations in the ratio of ivermectin B1a and B1b between batches and manufacturers, as well as potentially novel formulations for malaria control, should not influence ivermectin mosquito-lethal efficacy.


Asunto(s)
Anopheles , Insecticidas , Ivermectina , Ivermectina/farmacología , Animales , Anopheles/efectos de los fármacos , Insecticidas/farmacología , Humanos , Mosquitos Vectores/efectos de los fármacos , Femenino , Control de Mosquitos/métodos , Malaria/prevención & control , Malaria/transmisión
4.
Antimicrob Agents Chemother ; 67(7): e0173022, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37338381

RESUMEN

Ivermectin is an endectocide used widely to treat a variety of internal and external parasites. Field trials of ivermectin mass drug administration for malaria transmission control have demonstrated a reduction of Anopheles mosquito survival and human malaria incidence. Ivermectin will mostly be deployed together with artemisinin-based combination therapies (ACT), the first-line treatment of falciparum malaria. It has not been well established if ivermectin has activity against asexual stage Plasmodium falciparum or if it interacts with the parasiticidal activity of other antimalarial drugs. This study evaluated antimalarial activity of ivermectin and its metabolites in artemisinin-sensitive and artemisinin-resistant P. falciparum isolates and assessed in vitro drug-drug interaction with artemisinins and its partner drugs. The concentration of ivermectin causing half of the maximum inhibitory activity (IC50) on parasite survival was 0.81 µM with no significant difference between artemisinin-sensitive and artemisinin-resistant isolates (P = 0.574). The ivermectin metabolites were 2-fold to 4-fold less active than the ivermectin parent compound (P < 0.001). Potential pharmacodynamic drug-drug interactions of ivermectin with artemisinins, ACT-partner drugs, and atovaquone were studied in vitro using mixture assays providing isobolograms and derived fractional inhibitory concentrations. There were no synergistic or antagonistic pharmacodynamic interactions when combining ivermectin and antimalarial drugs. In conclusion, ivermectin does not have clinically relevant activity against the asexual blood stages of P. falciparum. It also does not affect the in vitro antimalarial activity of artemisinins or ACT-partner drugs against asexual blood stages of P. falciparum.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Animales , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Ivermectina/farmacología , Ivermectina/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria/tratamiento farmacológico , Combinación de Medicamentos , Resistencia a Medicamentos
5.
Sci Rep ; 13(1): 8131, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208382

RESUMEN

Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. The mosquito-lethal effect of ivermectin in clinical trials exceeds that predicted from in vitro laboratory experiments, suggesting that ivermectin metabolites have mosquito-lethal effect. The three primary ivermectin metabolites in humans (i.e., M1 (3″-O-demethyl ivermectin), M3 (4-hydroxymethyl ivermectin), and M6 (3″-O-demethyl, 4-hydroxymethyl ivermectin) were obtained by chemical synthesis or bacterial modification/metabolism. Ivermectin and its metabolites were mixed in human blood at various concentrations, blood-fed to Anopheles dirus and Anopheles minimus mosquitoes, and mortality was observed daily for fourteen days. Ivermectin and metabolite concentrations were quantified by liquid chromatography linked with tandem mass spectrometry to confirm the concentrations in the blood matrix. Results revealed that neither the LC50 nor LC90 values differed between ivermectin and its major metabolites for An. dirus or An. minimus., Additionally, there was no substantial differences in the time to median mosquito mortality when comparing ivermectin and its metabolites, demonstrating an equal rate of mosquito killing between the compounds evaluated. These results demonstrate that ivermectin metabolites have a mosquito-lethal effect equal to the parent compound, contributing to Anopheles mortality after treatment of humans.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Ivermectina/farmacología , Insecticidas/farmacología , Mosquitos Vectores , Malaria/tratamiento farmacológico , Control de Mosquitos/métodos
7.
Swiss Med Wkly ; 153: 40129, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579328

RESUMEN

AIM OF THE STUDY: The global prevalence of scabies is estimated to be up to 200 million cases annually, with young children particularly affected. In Europe, most cases are thought to originate in migrant populations. Scabies management is challenging in children. To identify knowledge gaps and research needs, we aimed to descriptively evaluate the management of children with scabies by different Swiss healthcare providers. METHODS: An invitation for an anonymous online survey (36 questions) was sent to members of Swiss societies of dermatologists, general practitioners, paediatricians, paediatric dermatologists, paediatric infectious diseases specialists, and tropical medicine specialists, inviting clinicians to participate from 25th May to 8th August 2020. One reminder invitation was sent. Hospital pharmacies and the distributor of permethrin were contacted to report consumption trends of scabicides in 2018 and 2019. RESULTS: The survey was completed by 248 clinicians: 146 (59%) paediatricians, 47 (19%) dermatologists, 28 (11%) general practitioners, 6 (2%) paediatric dermatologists, 13 (5%) paediatric infectious diseases specialists, and 8 (3%) tropical medicine specialists. Most consulted up to 10 scabies cases within a 16-month period, with similar numbers in migrant and Swiss children. Dermoscopy was used by 24% of non-dermatologists. Non-dermatologists did not consider co-treatment of close contacts in up to 59% of cases. While permethrin was the first-line treatment, treatment failures were frequently reported in children aged <5 years. Up to 67% of paediatric dermatologists regularly used oral ivermectin off-label in children weighing <15 kg. None of the paediatric dermatologists, 15% of the dermatologists, and 9% of the non-dermatologists used only one treatment cycle.Scabicide consumption increased. Treatment studies on ivermectin use in children weighing <15 kg had the highest research priority. CONCLUSION: In Switzerland, scabies is a frequent dermatosis in migrant and Swiss children. While accessible, optimal diagnostics are underutilised, and treatment is suboptimal. Permethrin resistance appears to be an increasing problem. Dermatologists regularly use ivermectin off-label in children weighing <15 kg. Treatment studies on ivermectin use in children weighing <15 kg, user-friendly diagnostic tools, new treatment protocols, and child-friendly dosage forms are needed to improve the diagnosis and treatment of children with scabies.


Asunto(s)
Enfermedades Transmisibles , Insecticidas , Escabiosis , Humanos , Niño , Preescolar , Escabiosis/diagnóstico , Escabiosis/tratamiento farmacológico , Escabiosis/epidemiología , Permetrina/uso terapéutico , Ivermectina/uso terapéutico , Suiza
8.
Parasit Vectors ; 14(1): 378, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315509

RESUMEN

BACKGROUND: Ivermectin mass drug administration (MDA) could accelerate malaria elimination in the Greater Mekong Subregion. This study was performed to characterize the bionomics of Anopheles in Surat Thani province, Thailand. METHODS: Mosquitoes were collected via human landing collections between February and October 2019. Anopheles mosquitoes were morphologically identified to species. Primary Anopheles malaria vectors were dissected to assess parity status, and a subset were evaluated for molecular identification and Plasmodium detection. RESULTS: A total of 17,348 mosquitoes were collected during the study period; of these, 5777 were Anopheles mosquitoes. Morphological studies identified 15 Anopheles species, of which the most abundant were Anopheles minimus (s.l.) (87.16%, n = 5035), An. dirus s.l. (7.05%, n = 407) and An. barbirostris s.l. (2.86%, n = 165). Molecular identification confirmed that of the An. minimus s.l. mosquitoes collected, 99.80% were An. minimus (s.s.) (n = 484) and 0.2% were An. aconitus (n = 1), of the An. dirus (s.l.) collected, 100% were An. baimaii (n = 348), and of the An. maculatus (s.l.) collected, 93.62% were An. maculatus (s.s.) (n = 44) and 6.38% were An. sawadwongporni (n = 3). No Anopheles mosquito tested was Plasmodium positive (0/879). An average of 11.46 Anopheles were captured per collector per night. There were differences between species in hour of collection (Kruskal-Wallis H-test: χ2 = 80.89, P < 0.0001, n = 5666), with more An. barbirostris (s.l.) and An. maculatus (s.l.) caught earlier compared to An. minimus (s.l.) (P = 0.0001 and P < 0.0001, respectively) and An. dirus (s.l.) (P = 0.0082 and P < 0.001, respectively). The proportion of parous An. minimus (s.l.) captured by hour increased throughout the night (Wald Chi-square: χ2 = 17.31, P = 0.000, odds ratio = 1.0535, 95% confidence interval 1.0279-1.0796, n = 3400). Overall, An. minimus (s.l.) parity was 67.68% (2375/3509) with an intra-cluster correlation of 0.0378. A power calculation determined that an An. minimus (s.l.) parity reduction treatment effect size = 34%, with four clusters per treatment arm and a minimum of 300 mosquitoes dissected per cluster, at an α = 0.05, will provide 82% power to detect a significant difference following ivermectin MDA. CONCLUSIONS: The study area in Surat Thani province is an ideal location to evaluate the impact of ivermectin MDA on An. minimus parity.


Asunto(s)
Anopheles/fisiología , Enfermedades Endémicas , Malaria/transmisión , Mosquitos Vectores/fisiología , Animales , Anopheles/clasificación , Anopheles/genética , Anopheles/parasitología , Análisis por Conglomerados , Humanos , Malaria/epidemiología , Mosquitos Vectores/clasificación , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Plasmodium/clasificación , Plasmodium/genética , Plasmodium/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Tailandia/epidemiología , Factores de Tiempo
9.
PLoS Negl Trop Dis ; 15(3): e0009144, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33730099

RESUMEN

BACKGROUND: Oral ivermectin is a safe broad spectrum anthelminthic used for treating several neglected tropical diseases (NTDs). Currently, ivermectin use is contraindicated in children weighing less than 15 kg, restricting access to this drug for the treatment of NTDs. Here we provide an updated systematic review of the literature and we conducted an individual-level patient data (IPD) meta-analysis describing the safety of ivermectin in children weighing less than 15 kg. METHODOLOGY/PRINCIPAL FINDINGS: A systematic review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for IPD guidelines by searching MEDLINE via PubMed, Web of Science, Ovid Embase, LILACS, Cochrane Database of Systematic Reviews, TOXLINE for all clinical trials, case series, case reports, and database entries for reports on the use of ivermectin in children weighing less than 15 kg that were published between 1 January 1980 to 25 October 2019. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO): CRD42017056515. A total of 3,730 publications were identified, 97 were selected for potential inclusion, but only 17 sources describing 15 studies met the minimum criteria which consisted of known weights of children less than 15 kg linked to possible adverse events, and provided comprehensive IPD. A total of 1,088 children weighing less than 15 kg were administered oral ivermectin for one of the following indications: scabies, mass drug administration for scabies control, crusted scabies, cutaneous larva migrans, myiasis, pthiriasis, strongyloidiasis, trichuriasis, and parasitic disease of unknown origin. Overall a total of 1.4% (15/1,088) of children experienced 18 adverse events all of which were mild and self-limiting. No serious adverse events were reported. CONCLUSIONS/SIGNIFICANCE: Existing limited data suggest that oral ivermectin in children weighing less than 15 kilograms is safe. Data from well-designed clinical trials are needed to provide further assurance.


Asunto(s)
Antihelmínticos/efectos adversos , Helmintiasis/tratamiento farmacológico , Ivermectina/efectos adversos , Administración Oral , Antihelmínticos/administración & dosificación , Peso Corporal , Preescolar , Humanos , Lactante , Ivermectina/administración & dosificación , Enfermedades Desatendidas/tratamiento farmacológico
10.
Pharmacol Res Perspect ; 9(1): e00712, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33497030

RESUMEN

Mass drug administration of ivermectin has been proposed as a possible malaria elimination tool. Ivermectin exhibits a mosquito-lethal effect well beyond its biological half-life, suggesting the presence of active slowly eliminated metabolites. Human liver microsomes, primary human hepatocytes, and whole blood from healthy volunteers given oral ivermectin were used to identify ivermectin metabolites by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry. The molecular structures of metabolites were determined by mass spectrometry and verified by nuclear magnetic resonance. Pure cytochrome P450 enzyme isoforms were used to elucidate the metabolic pathways. Thirteen different metabolites (M1-M13) were identified after incubation of ivermectin with human liver microsomes. Three (M1, M3, and M6) were the major metabolites found in microsomes, hepatocytes, and blood from volunteers after oral ivermectin administration. The chemical structure, defined by LC-MS/MS and NMR, indicated that M1 is 3″-O-demethyl ivermectin, M3 is 4-hydroxymethyl ivermectin, and M6 is 3″-O-demethyl, 4-hydroxymethyl ivermectin. Metabolic pathway evaluations with characterized cytochrome P450 enzymes showed that M1, M3, and M6 were produced primarily by CYP3A4, and that M1 was also produced to a small extent by CYP3A5. Demethylated (M1) and hydroxylated (M3) ivermectin were the main human in vivo metabolites. Further studies are needed to characterize the pharmacokinetic properties and mosquito-lethal activity of these metabolites.


Asunto(s)
Antiparasitarios/farmacocinética , Ivermectina/farmacocinética , Administración Oral , Antiparasitarios/sangre , Antiparasitarios/farmacología , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Desmetilación , Hepatocitos/metabolismo , Humanos , Hidroxilación , Ivermectina/sangre , Ivermectina/farmacología , Redes y Vías Metabólicas , Microsomas Hepáticos/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-32660993

RESUMEN

Previously, ivermectin (1 to 10 mg/kg of body weight) was shown to inhibit the liver-stage development of Plasmodium berghei in orally dosed mice. Here, ivermectin showed inhibition of the in vitro development of Plasmodium cynomolgi schizonts (50% inhibitory concentration [IC50], 10.42 µM) and hypnozoites (IC50, 29.24 µM) in primary macaque hepatocytes when administered as a high dose prophylactically but not when administered in radical cure mode. The safety, pharmacokinetics, and efficacy of oral ivermectin (0.3, 0.6, and 1.2 mg/kg) with and without chloroquine (10 mg/kg) administered for 7 consecutive days were evaluated for prophylaxis or radical cure of P. cynomolgi liver stages in rhesus macaques. No inhibition or delay to blood-stage P. cynomolgi parasitemia was observed at any ivermectin dose (0.3, 0.6, and 1.2 mg/kg). Ivermectin (0.6 and 1.2 mg/kg) and chloroquine (10 mg/kg) in combination were well-tolerated with no adverse events and no significant pharmacokinetic drug-drug interactions observed. Repeated daily ivermectin administration for 7 days did not inhibit ivermectin bioavailability. It was recently demonstrated that both ivermectin and chloroquine inhibit replication of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro Further ivermectin and chloroquine trials in humans are warranted to evaluate their role in Plasmodium vivax control and as adjunctive therapies against COVID-19 infections.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Ivermectina/farmacología , Hígado/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium cynomolgi/efectos de los fármacos , Animales , Antimaláricos/sangre , Antimaláricos/farmacocinética , Disponibilidad Biológica , Cloroquina/sangre , Cloroquina/farmacocinética , Esquema de Medicación , Combinación de Medicamentos , Sinergismo Farmacológico , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/parasitología , Ivermectina/sangre , Ivermectina/farmacocinética , Hígado/parasitología , Macaca mulatta , Malaria/parasitología , Masculino , Parasitemia/tratamiento farmacológico , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium cynomolgi/patogenicidad , Cultivo Primario de Células , Esquizontes/efectos de los fármacos , Esquizontes/crecimiento & desarrollo
12.
Am J Trop Med Hyg ; 102(2s): 3-24, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31971144

RESUMEN

In the context of stalling progress against malaria, resistance of mosquitoes to insecticides, and residual transmission, mass drug administration (MDA) of ivermectin, an endectocide used for neglected tropical diseases (NTDs), has emerged as a promising complementary vector control method. Ivermectin reduces the life span of Anopheles mosquitoes that feed on treated humans and/or livestock, potentially decreasing malaria parasite transmission when administered at the community level. Following the publication by WHO of the preferred product characteristics for endectocides as vector control tools, this roadmap provides a comprehensive view of processes needed to make ivermectin available as a vector control tool by 2024 with a completely novel mechanism of action. The roadmap covers various aspects, which include 1) the definition of optimal dosage/regimens for ivermectin MDA in both humans and livestock, 2) the risk of resistance to the drug and environmental impact, 3) ethical issues, 4) political and community engagement, 5) translation of evidence into policy, and 6) operational aspects of large-scale deployment of the drug, all in the context of a drug given as a prevention tool acting at the community level. The roadmap reflects the insights of a multidisciplinary group of global health experts who worked together to elucidate the path to inclusion of ivermectin in the toolbox against malaria, to address residual transmission, counteract insecticide resistance, and contribute to the end of this deadly disease.


Asunto(s)
Antiparasitarios/farmacología , Insecticidas/farmacología , Ivermectina/farmacología , Malaria/prevención & control , Mosquitos Vectores/efectos de los fármacos , África , Animales , Antiparasitarios/uso terapéutico , Enfermedades Endémicas/prevención & control , Humanos , Insecticidas/uso terapéutico , Ivermectina/uso terapéutico , Dosificación Letal Mediana , Malaria/tratamiento farmacológico , Malaria/transmisión , Administración Masiva de Medicamentos , Seguridad , España , Organización Mundial de la Salud
13.
Lancet Infect Dis ; 20(4): 498-508, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31948767

RESUMEN

BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 µg/kg (1 × 400 µg/kg) and three consecutive daily doses of 300 µg/kg per day (3 × 300 µg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 µg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship.


Asunto(s)
Ivermectina/administración & dosificación , Malaria , Mosquitos Vectores , Animales , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Burkina Faso/epidemiología , Niño , Femenino , Humanos , Incidencia , Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Masculino , Administración Masiva de Medicamentos , Prevalencia , Quinolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Estaciones del Año
14.
Clin Pharmacol Ther ; 107(5): 1221-1230, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31697848

RESUMEN

Mass administration of antimalarial drugs and ivermectin are being considered as potential accelerators of malaria elimination. The safety, tolerability, pharmacokinetics, and mosquito-lethal effects of combinations of ivermectin, dihydroartemisinin-piperaquine, and primaquine were evaluated. Coadministration of ivermectin and dihydroartemisinin-piperaquine resulted in increased ivermectin concentrations with corresponding increases in mosquito-lethal effect across all subjects. Exposure to piperaquine was also increased when coadministered with ivermectin, but electrocardiograph QT-interval prolongation was not increased. One subject had transiently impaired liver function. Ivermectin mosquito-lethal effect was greater than predicted previously against the major Southeast Asian malaria vectors. Both Anopheles dirus and Anopheles minimus mosquito mortality was increased substantially (20-fold and 35-fold increase, respectively) when feeding on volunteer blood after ivermectin administration compared with in vitro ivermectin-spiked blood. This suggests the presence of ivermectin metabolites that impart mosquito-lethal effects. Further studies of this combined approach to accelerate malaria elimination are warranted.


Asunto(s)
Artemisininas/administración & dosificación , Ivermectina/administración & dosificación , Primaquina/administración & dosificación , Quinolinas/administración & dosificación , Adolescente , Adulto , Animales , Anopheles/efectos de los fármacos , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Artemisininas/efectos adversos , Artemisininas/farmacocinética , Interacciones Farmacológicas , Quimioterapia Combinada , Femenino , Humanos , Insecticidas/administración & dosificación , Insecticidas/efectos adversos , Insecticidas/farmacocinética , Ivermectina/efectos adversos , Ivermectina/farmacocinética , Malaria/prevención & control , Masculino , Persona de Mediana Edad , Primaquina/efectos adversos , Primaquina/farmacocinética , Quinolinas/efectos adversos , Quinolinas/farmacocinética , Tailandia , Adulto Joven
15.
Lancet Glob Health ; 8(1): e92-e100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31839144

RESUMEN

BACKGROUND: About 3·7 billion doses of ivermectin have been distributed in mass drug administration (MDA) campaigns globally over the past 30 years. At 10-100 times higher than current human doses, ivermectin is a known teratogen in mammals. During these campaigns with recommended doses, pregnant women might be inadvertently exposed. We therefore aimed to evaluate the existing evidence for serious and non-serious adverse events after ivermectin exposure in pregnant women. METHODS: For this systematic review and meta-analysis, we searched relevant databases and trial registry platforms on July 15, 2018, for randomised controlled trials (RCTs) and observational studies that reported adverse events in pregnant women. We did not use language or date restrictions. Outcomes of interest were spontaneous abortions, stillbirths, congenital anomalies, and neonatal death (serious adverse events), as well as maternal morbidity, preterm births, and low birthweight (adverse events). The risk of bias was assessed using the Newcastle-Ottawa Scale for observational studies and the Cochrane Risk of Bias Tool for RCTs. We did the meta-analysis of observational studies and RCTs separately. The quality of evidence was assessed using the GRADE approach. The study protocol is registered with PROSPERO, protocol CRD42016046914. FINDINGS: We identified 147 records, of which only five observational studies and one RCT were included for quantitative analysis; these studies were published between 1990 and 2008, and were done in six African countries. 893 women with 899 pregancy outcomes were included, of whom 496 pregnant women (500 pregnancy outcomes) received ivermectin inadvertently during MDA campaigns in the observational studies and 397 pregnant women (399 pregnancy outcomes) purposely received ivermectin as part of the open-label RCT. No study reported neonatal deaths, maternal morbidity, preterm births, or low birthweight. It is unclear whether exposure to ivermectin during pregnancy increases the risk of spontaneous abortions and stillbirths (odds ratio [OR] 1·15 [95% CI 0·75-1·78] with very low certainty of evidence for the four observational studies and 0·62 [0·18-2·14] with very low certainty of evidence for the RCT) or congenital anomalies (OR 1·69 [95% CI 0·83-3·41] with very low certainty of evidence for the five observational studies and 1·10 [0·07-17·65] with very low certainty of evidence for the RCT). INTERPRETATION: There is insufficient evidence to conclude on the safety profile of ivermectin during pregnancy. Treatment campaigns should focus additional efforts on preventing inadvertent treatment of pregnant women. FUNDING: Unitaid.


Asunto(s)
Ivermectina/administración & dosificación , Ivermectina/toxicidad , Ivermectina/uso terapéutico , Complicaciones del Embarazo/inducido químicamente , Mujeres Embarazadas , Teratógenos/toxicidad , Administración Oral , Adulto , Femenino , Humanos , Embarazo , Resultado del Embarazo
16.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29444080

RESUMEN

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Asunto(s)
Anopheles/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Ivermectina/farmacología , Malaria/transmisión , Plasmodium vivax/efectos de los fármacos , Animales , Anopheles/parasitología , Brasil , Cloroquina/farmacología , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Femenino , Humanos , Insectos Vectores/parasitología , Ivermectina/administración & dosificación , Ivermectina/sangre , Ivermectina/metabolismo , Malaria/sangre , Oocistos/efectos de los fármacos , Oocistos/patogenicidad , Primaquina/farmacología
17.
Parasit Vectors ; 10(1): 623, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29282130

RESUMEN

BACKGROUND: Malaria remains a major public health concern. Vector control measures based solely on insecticide treated nets (ITNs) and indoor residual spraying (IRS) have demonstrated not to be feasible for malaria elimination. It has been shown that ivermectin affects several aspects of Anopheles species biology. Along the Latin American seacoast, Anopheles aquasalis Curry plays an important role in malaria transmission. The observation of mosquitoes locomotor activity under laboratory conditions can reveal details of their daily activity rhythms, which is controlled by an endogenous circadian clock that seems to be influenced by external signals, such as light and temperature. In this study, we assessed basal locomotor activity and the effects of ivermectin on locomotor activity of the American malaria vector, An. aquasalis. METHODS: Adult females of Anopheles aquasalis used in experiments were three to five days post-emergence. Blood from one single subject was used to provide mosquito meals by membrane feeding assays. Powdered ivermectin compound was used to achieve different concentrations of drug as previously described. Fully engorged mosquitoes were individually placed into glass tubes and provided with 10% sucrose. Each tube was placed into a Locomotor Activity Monitor (LAM). The LAMs were kept inside an incubator under a constant temperature and a 12:12 h light:dark cycle. The average locomotor activity was calculated as the mean number of movements performed per mosquito in the period considered. Intervals of time assessed were adapted from a previous study. One-way ANOVA tests were performed in order to compare means between groups. Additionally, Dunnett's method was used for post-hoc pairwise means comparisons between each group and control. Stata software version 13 was used for the analysis. RESULTS: Anopheles aquasalis showed a nocturnal and bimodal pattern for mosquitoes fed both control blood meals and sub-lethal concentrations of ivermectin. In this species, activity peaks occurred at the beginning of the photophase and scotophase in the control group. The nocturnal activity is evident and higher just after the evening peak and maintains basal levels of locomotion throughout the scotophase. In the entire group analysis, locomotor activity means of experimental sets were significantly lower than control for each period of time evaluated. In the survival group, the locomotor activity means of all treatment sets were lower than control mosquitoes for all intervals of time when both the whole period and scotophase were assessed. When the middle of scotophase was evaluated, means were significantly lower for LC15 and LC25, but not LC5. For the beginning of photophase period, significant differences were detected only between control and LC5. When both the photophase and scotophase were assessed alone, no significant differences were found. Mean locomotor activity was significantly lower for dead group when compared to survival group for all experimental sets when whole period, photophase, and scotophase were assessed. CONCLUSIONS: Ivermectin seems to decrease locomotor activity of An. aquasalis at sub-lethal concentrations. The effects on locomotor activity increase according at higher ivermectin concentrations and are most evident during the whole scotophase as well as in the beginning and in the end of this phase, and sub-lethal effects may still be observed in the photophase. Findings presented in this study demonstrate that sub-lethal ivermectin effects reduce mosquito locomotor activity, which could diminish vectorial capacity and therefore the malaria transmission.


Asunto(s)
Anopheles/efectos de los fármacos , Anopheles/fisiología , Insecticidas/farmacología , Ivermectina/farmacología , Locomoción/efectos de los fármacos , Animales , Femenino
18.
Malar J ; 16(1): 474, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162101

RESUMEN

BACKGROUND: Outdoor malaria transmission hinders malaria elimination efforts in the Amazon region and novel vector control tools are needed. Ivermectin mass drug administration (MDA) to humans kills wild Anopheles, targets outdoor-feeding vectors, and can suppress malaria parasite transmission. Laboratory investigations were performed to determine ivermectin susceptibility, sporontocidal effect and inhibition of time to re-feed for the primary Amazonian malaria vector, Anopheles darlingi. METHODS: To assess ivermectin susceptibility, various concentrations of ivermectin were mixed in human blood and fed to An. darlingi. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with Probit analysis was used to calculate lethal concentrations of ivermectin that killed 50% (LC50), 25% (LC25) and 5% (LC5) of mosquitoes. To examine ivermectin sporonticidal effect, Plasmodium vivax blood samples were collected from malaria patients and offered to mosquitoes without or with ivermectin at the LC50, LC25 or LC5. To assess ivermectin inhibition of mosquito time to re-feed, concentrations of ivermectin predicted to occur after a single oral dose of 200 µg/kg ivermectin were fed to An. darlingi. Every day for 12 days thereafter, individual mosquitoes were given the opportunity to re-feed on a volunteer. Any mosquitoes that re-blood fed or died were removed from the study. RESULTS: Ivermectin significantly reduced An. darlingi survivorship: 7-day-LC50 = 43.2 ng/ml [37.5, 48.6], -LC25 = 27.8 ng/ml [20.4, 32.9] and -LC5 = 14.8 ng/ml [7.9, 20.2]. Ivermectin compound was sporontocidal to P. vivax in An. darlingi at the LC50 and LC25 concentrations reducing prevalence by 22.6 and 17.1%, respectively, but not at the LC5. Oocyst intensity was not altered at any concentration. Ivermectin significantly delayed time to re-feed at the 4-h (48.7 ng/ml) and 12-h (26.9 ng/ml) concentrations but not 36-h (10.6 ng/ml) or 60-h (6.3 ng/ml). CONCLUSIONS: Ivermectin is lethal to An. darlingi, modestly inhibits sporogony of P. vivax, and delays time to re-feed at concentrations found in humans up to 12 h post drug ingestion. The LC50 value suggests that a higher than standard dose (400-µg/kg) is necessary to target An. darlingi. These results suggest that ivermectin MDA has potential in the Amazon region to aid malaria elimination efforts.


Asunto(s)
Anopheles/efectos de los fármacos , Insecticidas/farmacología , Ivermectina/farmacología , Mosquitos Vectores/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Animales , Anopheles/parasitología , Anopheles/fisiología , Conducta Alimentaria/efectos de los fármacos , Femenino , Mosquitos Vectores/parasitología , Mosquitos Vectores/fisiología , Oocistos/efectos de los fármacos , Perú , Plasmodium vivax/crecimiento & desarrollo
19.
Malar J ; 16(1): 280, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687086

RESUMEN

BACKGROUND: Novel vector control methods that can directly target outdoor malaria transmission are urgently needed in the Greater Mekong Subregion (GMS) to accelerate malaria elimination and artemisinin resistance containment efforts. Ivermectin mass drug administration (MDA) to humans has been shown to effectively kill wild Anopheles and suppress malaria transmission in West Africa. Preliminary laboratory investigations were performed to determine ivermectin susceptibility and sporontocidal effect in GMS Anopheles malaria vectors coupled with pharmacokinetic models of ivermectin at escalating doses. METHODS: A population-based pharmacokinetic model of ivermectin was developed using pre-existing data from a clinical trial conducted in Thai volunteers at the 200 µg/kg dose. To assess ivermectin susceptibility, various concentrations of ivermectin compound were mixed in human blood meals and blood-fed to Anopheles dirus, Anopheles minimus, Anopheles sawadwongporni, and Anopheles campestris. Mosquito survival was monitored daily for 7 days and a non-linear mixed effects model with probit analyses was used to calculate concentrations of ivermectin that killed 50% (LC50) of mosquitoes for each species. Blood samples were collected from Plasmodium vivax positive patients and offered to mosquitoes with or without ivermectin at the ivermectin LC25 or LC5 for An. dirus and An. minimus. RESULTS: The GMS Anopheles displayed a range of susceptibility to ivermectin with species listed from most to least susceptible being An. minimus (LC50 = 16.3 ng/ml) > An. campestris (LC50 = 26.4 ng/ml) = An. sawadwongporni (LC50 = 26.9 ng/ml) > An. dirus (LC50 = 55.6 ng/ml). Mosquito survivorship results, the pharmacokinetic model, and extensive safety data indicated that ivermectin 400 µg/kg is the ideal minimal dose for MDA in the GMS for malaria parasite transmission control. Ivermectin compound was sporontocidal to P. vivax in both An. dirus and An. minimus at the LC25 and LC5 concentrations. CONCLUSIONS: Ivermectin is lethal to dominant GMS Anopheles malaria vectors and inhibits sporogony of P. vivax at safe human relevant concentrations. The data suggest that ivermectin MDA has potential in the GMS as a vector and transmission blocking control tool to aid malaria elimination efforts.


Asunto(s)
Anopheles/efectos de los fármacos , Antiprotozoarios/farmacología , Insecticidas/farmacología , Ivermectina/farmacología , Malaria Vivax/prevención & control , Plasmodium vivax/efectos de los fármacos , Animales , Asia Sudoriental , Relación Dosis-Respuesta a Droga , Femenino , Modelos Teóricos , Mosquitos Vectores/efectos de los fármacos , Especificidad de la Especie
20.
Malar J ; 15(1): 491, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27660149

RESUMEN

BACKGROUND: Strategies designed to advance towards malaria elimination rely on the detection and treatment of infections, rather than fever, and the interruption of malaria transmission between mosquitoes and humans. Mass drug administration with anti-malarials directed at eliminating parasites in blood, either to entire populations or targeting only those with malaria infections, are considered useful strategies to progress towards malaria elimination, but may be insufficient if applied on their own. These strategies assume a closer contact with populations, so incorporating a vector control intervention tool to those approaches could significantly enhance their efficacy. Ivermectin, an endectocide drug efficacious against a range of Anopheles species, could be added to other drug-based interventions. Interestingly, ivermectin could also be useful to target outdoor feeding and resting vectors, something not possible with current vector control tools, such as impregnated bed nets or indoor residual spraying (IRS). RESULTS: Anopheles aquasalis susceptibility to ivermectin was assessed. In vivo assessments were performed in six volunteers, being three men and three women. The effect of ivermectin on reproductive fitness and mosquito survivorship using membrane feeding assay (MFA) and direct feeding assay (DFA) was assessed and compared. The ivermectin lethal concentration (LC) values were LC50 = 47.03 ng/ml [44.68-49.40], LC25 = 31.92 ng/ml [28.60-34.57] and LC5 = 18.28 ng/ml [14.51-21.45]. Ivermectin significantly reduced the survivorship of An. aquasalis blood-fed 4 h post-ingestion (X 2 [N = 880] = 328.16, p < 0.001), 2 days post-ingestion (DPI 2) (X 2 [N = 983] = 156.75, p < 0.001), DPI 7 (X 2 [N = 935] = 31.17, p < 0.001) and DPI 14 (X 2 [N = 898] = 38.63, p < 0.001) compared to the blood fed on the untreated control. The average number of oviposited eggs per female was significantly lower in LC5 group (22.44 [SD = 3.38]) than in control (34.70 [SD = 12.09]) (X 2 [N = 199] = 10.52, p < 0.001) as well as the egg hatch rate (LC5 = 74.76 [SD = 5.48]) (Control = 81.91 [SD = 5.92]) (X 2 [N = 124] = 64.24, p < 0.001). However, no differences were observed on the number of pupae that developed from larvae (Control = 34.19 [SD = 10.42) and group (LC5 = 33.33 [SD = 11.97]) (X 2 [N = 124] = 0.96, p > 0.05). CONCLUSIONS: Ivermectin drug reduces mosquito survivorship when blood fed on volunteer blood from 4 h to 14 days post-ingestion controlling for volunteers' gender. Ivermectin at mosquito sub-lethal concentrations (LC5) reduces fecundity and egg hatch rate but not the number of pupae that developed from larvae. DFA had significantly higher effects on mosquito survival compared to MFA. The findings are presented and discussed through the prism of malaria elimination in the Amazon region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA