Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2395: 259-283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34822158

RESUMEN

In this chapter, we present the Root and Soil Water Movement and Solute transport model R-SWMS, which can be used to simulate flow and transport in the soil-plant system. The equations describing water flow in soil-root systems are presented and numerical solutions are provided. An application of R-SWMS is then briefly discussed, in which we combine in vivo and in silico experiments in order to decrypt water flow in the soil-root domain. More precisely, light transmission imaging experiments were conducted to generate data that can serve as input for the R-SWMS model. These data include the root system architecture, the soil hydraulic properties and the environmental conditions (initial soil water content and boundary conditions, BC). Root hydraulic properties were not acquired experimentally, but set to theoretical values found in the literature. In order to validate the results obtained by the model, the simulated and experimental water content distributions were compared. The model was then used to estimate variables that were not experimentally accessible, such as the actual root water uptake distribution and xylem water potential.


Asunto(s)
Raíces de Plantas , Suelo , Agricultura , Agua , Xilema
2.
Front Plant Sci ; 11: 316, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296451

RESUMEN

Three-dimensional models of root growth, architecture and function are becoming important tools that aid the design of agricultural management schemes and the selection of beneficial root traits. However, while benchmarking is common in many disciplines that use numerical models, such as natural and engineering sciences, functional-structural root architecture models have never been systematically compared. The following reasons might induce disagreement between the simulation results of different models: different representation of root growth, sink term of root water and solute uptake and representation of the rhizosphere. Presently, the extent of discrepancies is unknown, and a framework for quantitatively comparing functional-structural root architecture models is required. We propose, in a first step, to define benchmarking scenarios that test individual components of complex models: root architecture, water flow in soil and water flow in roots. While the latter two will focus mainly on comparing numerical aspects, the root architectural models have to be compared at a conceptual level as they generally differ in process representation. Therefore, defining common inputs that allow recreating reference root systems in all models will be a key challenge. In a second step, benchmarking scenarios for the coupled problems are defined. We expect that the results of step 1 will enable us to better interpret differences found in step 2. This benchmarking will result in a better understanding of the different models and contribute toward improving them. Improved models will allow us to simulate various scenarios with greater confidence and avoid bugs, numerical errors or conceptual misunderstandings. This work will set a standard for future model development.

3.
J Exp Bot ; 70(10): 2797-2809, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30799498

RESUMEN

For the first time, a functional-structural root-system model is validated by combining a tracer experiment monitored with magnetic resonance imaging and three-dimensional modeling of water and solute transport.


Asunto(s)
Botánica/métodos , Imagen por Resonancia Magnética , Raíces de Plantas/metabolismo , Agua/metabolismo , Modelos Biológicos , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...