Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
ACS Omega ; 9(5): 5788-5797, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38343976

Well-defined semiconductor heterostructures are a basic requirement for the development of high-performance optoelectronic devices. In order to achieve the desired properties, a thorough study of the electrical behavior with a suitable spatial resolution is essential. For this, various sophisticated tip-based methods can be employed, such as conductive atomic force microscopy or multitip scanning tunneling microscopy (MT-STM). We demonstrate that in any tip-based measurement method, the tip-to-semiconductor contact is decisive for reliable and precise measurements and in interpreting the properties of the sample. For that, we used our ultrahigh-vacuum-based MT-STM coupled in vacuo to a reactor for the preparation of nanowires (NWs) with metal organic vapor phase epitaxy, and operated our MT-STM as a four-point nanoprober on III-V semiconductor NW heterostructures. We investigated a variety of upright, free-standing NWs with axial as well as coaxial heterostructures on the growth substrates. Our investigation reveals charging currents at the interface between the measuring tip and the semiconductor via native insulating oxide layers, which act as a metal-insulator-semiconductor capacitor with charging and discharging conditions in the operating voltage range. We analyze in detail the observed I-V characteristics and propose a strategy to achieve an optimized tip-to-semiconductor junction, which includes the influence of the native oxide layer on the overall electrical measurements. Our advanced experimental procedure enables a direct relation between the tip-to-NW junction and the electronic properties of as-grown (co)axial NWs providing precise guidance for all future tip-based investigations.

2.
Pharmacol Res Perspect ; 11(1): e01059, 2023 02.
Article En | MEDLINE | ID: mdl-36748725

Levetiracetam (LEV), a well-established anti-seizure medication (ASM), was launched before the original ICH S7B nonclinical guidance assessing QT prolongation potential and the introduction of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) paradigm. No information was available on its effects on cardiac channels. The goal of this work was to "pressure test" the CiPA approach with LEV and check the concordance of nonclinical core and follow-up S7B assays with clinical and post-marketing data. The following experiments were conducted with LEV (0.25-7.5 mM): patch clamp assays on hERG (acute or trafficking effects), NaV 1.5, CaV 1.2, Kir 2.1, KV 7.1/mink, KV 1.5, KV 4.3, and HCN4; in silico electrophysiology modeling (Virtual Assay® software) in control, large-variability, and high-risk human ventricular cell populations; electrophysiology measurements in human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and dog Purkinje fibers; ECG measurements in conscious telemetered dogs after single oral administration (150, 300, and 600 mg/kg). Except a slight inhibition (<10%) of hERG and KV 7.1/mink at 7.5 mM, that is, 30-fold the free therapeutic plasma concentration (FTPC) at 1500 mg, LEV did not affect any other cardiac channels or hERG trafficking. In both virtual and real human cardiomyocytes, and in dog Purkinje fibers, LEV induced no relevant changes in electrophysiological parameters or arrhythmia. No QTc prolongation was noted up to 2.7 mM unbound plasma levels in conscious dogs, corresponding to 10-fold the FTPC. Nonclinical assessment integrating CiPA assays shows the absence of QT prolongation and proarrhythmic risk of LEV up to at least 10-fold the FTPC and the good concordance with clinical and postmarketing data, although this does not exclude very rare occurrence of QT prolongation cases in patients with underlying risk factors.


Induced Pluripotent Stem Cells , Long QT Syndrome , Animals , Dogs , Humans , Levetiracetam/pharmacology , Myocytes, Cardiac
3.
J Infect Dis ; 227(6): 761-772, 2023 03 28.
Article En | MEDLINE | ID: mdl-35904987

BACKGROUND: The aim of this study was to investigate safety and immunogenicity of vaccine formulations against respiratory syncytial virus (RSV) containing the stabilized prefusion conformation of RSV fusion protein (RSVPreF3). METHODS: This phase 1/2, randomized controlled, observer-blind study enrolled 48 young adults (YAs; aged 18-40 years) and 1005 older adults (OAs; aged 60-80 years) between January and August 2019. Participants were randomized into equally sized groups to receive 2 doses of unadjuvanted (YAs and OAs) or AS01-adjuvanted (OAs) vaccine or placebo 2 months apart. Vaccine safety and immunogenicity were assessed until 1 month (YAs) or 12 months (OAs) after second vaccination. RESULTS: The RSVPreF3 vaccines boosted humoral (RSVPreF3-specific immunoglobulin G [IgG] and RSV-A neutralizing antibody) responses, which increased in an antigen concentration-dependent manner and were highest after dose 1. Compared to prevaccination, the geometric mean frequencies of polyfunctional CD4+ T cells increased after each dose and were significantly higher in adjuvanted than unadjuvanted vaccinees. Postvaccination immune responses persisted until end of follow-up. Solicited adverse events were mostly mild to moderate and transient. Despite a higher observed reactogenicity of AS01-containing vaccines, no safety concerns were identified for any assessed formulation. CONCLUSIONS: Based on safety and immunogenicity profiles, the AS01E-adjuvanted vaccine containing 120 µg of RSVPreF3 was selected for further clinical development. CLINICAL TRIALS REGISTRATION: NCT03814590.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Young Adult , Humans , Aged , Antibodies, Viral , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Neutralizing , Immunogenicity, Vaccine
4.
Lancet Infect Dis ; 22(7): 1062-1075, 2022 07.
Article En | MEDLINE | ID: mdl-35461522

BACKGROUND: One strategy to develop a universal influenza virus vaccine is to redirect the immune system to the highly conserved haemagglutinin stalk domain by sequentially administering vaccines expressing chimeric (c) haemagglutinins with a conserved stalk domain and divergent head domain, to which humans are naive. We aimed to assess the reactogenicity, safety, and immunogenicity of adjuvanted and unadjuvanted investigational supra-seasonal universal influenza virus vaccines (SUIVs) in healthy young adults. METHODS: In this observer-masked, randomised, controlled, phase 1-2 trial, we recruited adults aged 18-39 years with no clinically significant conditions from six centres in Belgium and the USA. Participants were randomly assigned to ten equally sized groups via an online system with the MATerial Excellence programme. Vaccines contained heterosubtypic group 1 H8, H5, or H11 haemagglutinin heads, an H1 haemagglutinin stalk, and an N1 neuraminidase (cH8/1N1, cH5/1N1, and cH11/1N1; haemagglutinin dose 15 µg/0·5 mL), administered on days 1 and 57, with a month 14 booster. SUIVs were evaluated in the sequences: cH8/1N1-placebo-cH5/1N1, cH5/1N1-placebo-cH8/1N1, or cH8/1N1-cH5/1N1-cH11/1N1, adjuvanted with either AS03 or AS01, or not adjuvanted. The last group received inactivated quadrivalent influenza vaccine (IIV4)-placebo-IIV4. Primary outcomes were safety (analysed in the exposed population) and immunogenicity in terms of the anti-H1 stalk humoral response at 28 days after vaccination (analysed in the per-protocol population, defined as participants who received the study vaccines according to the protocol). This trial is registered with ClinicalTrials.gov, NCT03275389. FINDINGS: Between Sept 25, 2017, and March 26, 2020, 507 eligible participants were enrolled. 468 (92%) participants received at least one dose of study vaccine (exposed population), of whom 244 (52%) were included in the per-protocol population at final analysis at month 26. The safety profiles of all chimeric vaccines were clinically acceptable, with no safety concerns identified. Injection-site pain was the most common adverse event, occurring in 84-96% of participants receiving an adjuvanted SUIV or non-adjuvanted IIV4 and in 40-50% of participants receiving a non-adjuvanted SUIV. Spontaneously reported adverse events up to 28 days after vaccination occurred in 36-60% of participants, with no trends observed for any group. 17 participants had a serious adverse event, none of which were considered to be causally related to the vaccine. Anti-H1 stalk antibody titres were highest in AS03-adjuvanted groups, followed by AS01-adjuvanted and non-adjuvanted groups, and were higher after cH8/1N1 than after cH5/1N1 and after a two-dose primary schedule than after a one-dose schedule. Geometric mean concentrations by ELISA ranged from 21 938·1 ELISA units/mL (95% CI 18 037·8-26 681·8) in the IIV4-placebo-IIV4 group to 116 596·8 ELISA units/mL (93 869·6-144 826·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the first dose and from 15 105·9 ELISA units/mL (12 007·7-19 003·6) in the non-adjuvanted cH5/1N1-placebo-cH8/1N1 group to 74 639·7 ELISA units/mL (59 986·3-92 872·6) in the AS03-adjuvanted cH8/1N1-cH5/1N1-cH11/1N1 group 28 days after the second dose. INTERPRETATION: The stalk domain seems to be a rational target for development of a universal influenza virus vaccine via administration of chimeric haemagglutinins with head domains to which humans are naive. FUNDING: GlaxoSmithKline Biologicals.


Influenza Vaccines , Influenza, Human , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Antibodies, Viral , Hemagglutinins , Humans , Immunogenicity, Vaccine , Virion , Young Adult
5.
Dalton Trans ; (18): 3108-17, 2005 Sep 21.
Article En | MEDLINE | ID: mdl-16127507

A series of mixed alkoxyalkoxo chloro complexes of vanadium(V), [VOCl2(OCH2CH2OR)]2 (R = Me, Et, iPr, Bz), [VOCl2(OCMe2CH2OMe)]2 and [VOCl2(OCH2(cyclo-C4H7O)]2, were synthesised and characterised. The title compounds can be obtained either from VOCl3 and the alkoxyalcohols by HCl elimination or from the corresponding lithium alkoxides and VOCl3 by salt metathesis reaction. X-Ray diffraction studies revealed the title compounds to be dimers with chloride bridging ligands and intramolecular ether coordination. Electrochemical results obtained by cyclic voltammetry indicate irreversible, reductive behaviour. The interactions of the title compounds with oxygen, nitrogen and phosphorus donor ligands were examined. Phosphorus and nitrogen donors lead to reduction products whereas tetrahydrofuran coordinates to the vanadium(V) centre by breaking the chloride bridge. All tetrahydrofuran complexes, [VOCl2(OCH2CH2OR)(thf)] (R = Me, Et, iPr) and [VOCl2(OCMe2CH2OMe)(thf)], have been characterised by single-crystal X-ray diffraction. The solid-state structures of these complexes show that they consist of six-coordinate monomers. Reaction of [VOCl2(OCH2CH(2)OMe)]2 with Me3SiCH2MgCl gave [VO(CH2SiMe3)3], which has been structurally characterised. The compounds were tested as catalysts for epoxidation and polymerisation reactions. They convert unfunctionalised olefins into the corresponding epoxides with moderate activity. They are good pre-catalysts for the polymerisation of ethene and oligomerise 1-hexene.


Chlorides/chemistry , Organometallic Compounds , Oxides/chemistry , Vanadium/chemistry , Catalysis , Crystallography, X-Ray , Electrochemistry , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
...