Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Environ Res ; 250: 118347, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38309567

The accidental spill of petroleum asphalt cement (PAC) in São Raimundo (SR Harbor, located on the Rio Negro (Manaus, Amazonas, Brazil) was monitored through the analysis of polyciclic aromatic hydrocarbons (PAHs) in water and a set of biomarkers in fishes (exposure biomarkes: PAHs-type metabolites concentrations in bile; the activities of ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in liver. Effect biomarkers: lipid peroxidation concentration (LPO) in liver, acetylcholinesterase activity in brain, and genotoxic DNA damage in erythrocytes). Two fish species, Acarichthys heckelii and Satanoperca jurupari, were collected 10, 45, and 90 days after the PAC spill in São Raimundo. At the same time, fish were collected from the Tupé Sustainable Development Reserve (Tupé) which served as a reference area. The sampling periods were related to the rising waters of the natural flood pulse of the Rio Negro. Higher concentrations of PAHs in water were observed at 10 and 45 days and returned to the values of TP 90 days after the PAC spill, a period in which harbor waters rose about 0.2 m. Unlike the PAHs in water, biomarker responses in both fish species significantly increased following the PAC spill in SR. Hepatic ethoxyresorufin-O-deethylase (EROD), PAH-like metabolites in bile, and erythrocyte DNA damage increases, together with inhibition of acetylcholinesterase (AChE) activity in the brain were the most evident responses for both fish species. The calculated pyrolytic index showed mixed sources of PAHs (petrogenic and pyrolytic). The applied PCA-FA indicated important relationships between dissolved organic carbon (DOC) and PAHs concentrations in water, where DOC and PAHs concentrations contributed to biomarkers responses for both fish species in all collection periods.


Biomarkers , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Brazil , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Biomarkers/metabolism , Petroleum Pollution/adverse effects , Cytochrome P-450 CYP1A1/metabolism , DNA Damage/drug effects , Liver/drug effects , Liver/metabolism , Glutathione Transferase/metabolism , Environmental Monitoring , Fishes/metabolism , Acetylcholinesterase/metabolism , Lipid Peroxidation/drug effects , Bile/chemistry , Bile/metabolism
2.
Conserv Physiol ; 12(1): coad105, 2024.
Article En | MEDLINE | ID: mdl-38293637

Fishing causes direct removal of individuals from wild populations but can also cause a physiological disturbance in fish that are released or discarded after capture. While sublethal physiological effects of fish capture have been well studied in commercial and recreational fisheries, this issue has been overlooked for the ornamental fish trade, where it is common to capture fish from the wild and discard non-target species. We examined metabolic responses to capture and discard procedures in the three-striped dwarf cichlid Apistogramma trifasciata, a popular Amazonian aquarium species that nonetheless may be discarded when not a target species. Individuals (n = 34) were tagged and exposed to each of four treatments designed to simulate procedures during the capture and discard process: 1) a non-handling control; 2) netting; 3) netting +30 seconds of air exposure; and 4) netting +60 seconds of air exposure. Metabolic rates were estimated using intermittent-flow respirometry, immediately following each treatment then throughout recovery overnight. Increasing amounts of netting and air exposure caused an acute increase in oxygen uptake and decrease in available aerobic scope. In general, recovery occurred quickly, with rapid decreases in oxygen uptake within the first 30 minutes post-handling. Notably, however, male fish exposed to netting +60 seconds of air exposure showed a delayed response whereby available aerobic scope was constrained <75% of maximum until ~4-6 hours post-stress. Larger fish showed a greater initial increase in oxygen uptake post-stress and slower rates of recovery. The results suggest that in the period following discard, this species may experience a reduced aerobic capacity for additional behavioural/physiological responses including feeding, territory defence and predator avoidance. These results are among the first to examine impacts of discard practises in the ornamental fishery and suggest ecophysiological research can provide valuable insight towards increasing sustainable practises in this global trade.

3.
J Exp Zool A Ecol Integr Physiol ; 335(9-10): 735-744, 2021 11.
Article En | MEDLINE | ID: mdl-34492166

Critical thermal maximum (CTmax ) is often used as an index of upper thermal tolerance in fishes; however, recent studies have shown that some fishes exhibit agitation or avoidance behavior well before the CTmax is reached. In this study, we quantified behavioral changes during CTmax trials in two Amazonian cichlids, Apistogramma agassizii and Mesonauta insignis. The thermal agitation temperature (Tag ) was recorded as the temperature at which fish left cover and began swimming in an agitated manner, and four behaviors (duration of sheltering, digging, activity, and aquatic surface respiration [ASR]) were compared before and after Tag . Both A. agassizii and M. insignis exhibited high critical thermal maxima, 40.8°C and 41.3°C, respectively. Agitation temperature was higher in M. insignis (37.3°C) than in A. agassizii (35.4°C), indicating that A. agassizii has a lower temperature threshold at which avoidance behavior is initiated. Activity level increased and shelter use decreased with increased temperatures, and patterns were similar between the two species. Digging behavior increased after Tag in both species, but was higher in A. agassazii and may reflect its substrate-oriented ecology. ASR (ventilating water at the surface film) was extremely rare before Tag , but increased in both cichlid species after Tag and was greater in M. insignis than in A. agassizii. This suggests that fish were experiencing physiological hypoxia at water temperatures approaching CTmax . These results demonstrate that acute thermal challenge can induce a suite of behavioral changes in fishes that may provide additional, ecologically relevant information on thermal tolerance.


Cichlids , Animals , Hypoxia , Swimming , Temperature
4.
Bull Environ Contam Toxicol ; 105(6): 853-859, 2020 Dec.
Article En | MEDLINE | ID: mdl-33201255

The main purpose of the present study was to investigate the potential use of metabolic parameters as non-specific biomarkers of pollution. The Igarapé do Quarenta is a small urban river crossing an industrial area in the city of Manaus, Amazon, and receives the city wastewater without treatment. The fish tambaqui (Colossoma macropomum) were exposed to water collected from two different sites of that stretch for 96 h. After exposure, routine metabolic rate (RMR) was measured, and fish were euthanized for measurements of electron transport system (ETS) activity, Copper (Cu) and Cadmium (Cd) bioaccumulation and biliary PAHs. Water in the sampling points presented low oxygen and high pH, conductivity, dissolved ions, Cu, Cd and ammonia. Bile concentrations of PAHs were high suggesting industrial pollution. The tambaqui exposed to water from Igarapé do Quarenta showed increased RMR and decreased ETS/RMR suggesting impairment of metabolic fish performance and the potential use of these parameters as biomarkers.


Characiformes/physiology , Water Pollutants, Chemical/toxicity , Ammonia , Animals , Cadmium/analysis , Cadmium/toxicity , Characiformes/metabolism , Copper/metabolism , Ions , Rivers , Wastewater , Water , Water Pollutants, Chemical/metabolism
5.
Article En | MEDLINE | ID: mdl-26387464

The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position.


Cichlids/physiology , Energy Metabolism , Fish Diseases/physiopathology , Hierarchy, Social , Hypoxia/veterinary , Models, Biological , Stress, Physiological , Aggression , Animals , Basal Metabolism , Behavior, Animal , Brazil , Electron Transport Chain Complex Proteins/metabolism , Environmental Illness/etiology , Environmental Illness/metabolism , Environmental Illness/physiopathology , Environmental Illness/veterinary , Feeding Behavior , Fish Diseases/etiology , Fish Diseases/metabolism , Fish Proteins/metabolism , Hot Temperature/adverse effects , Hypoxia/etiology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Random Allocation , Rivers
6.
J Comp Physiol B ; 185(7): 741-54, 2015 Oct.
Article En | MEDLINE | ID: mdl-26115689

In the traditional osmorespiratory compromise, fish increase their effective gill permeability to O2 during exercise or hypoxia, and in consequence suffer unfavorable ionic and osmotic fluxes. However oscars, which live in the frequently hypoxic ion-poor waters of the Amazon, actually decrease ionic fluxes across the gills during acute hypoxia without changing gill paracellular permeability, and exhibit rapid paving over of the mitochondrial-rich cells (MRCs). But what happens during prolonged exercise? Gill paracellular permeability, ionic fluxes, and gill morphology were examined in juvenile oscars at rest and during aerobic swimming. Initial validation tests with urinary catheterized fish quantified drinking, glomerular filtration, and urinary flow rates, and confirmed that measurements of gill paracellular permeability as [(3)H]PEG-4000 clearances were the same in efflux and influx directions, but far lower than previously measured in comparably sized trout. Although the oscars achieved a very similar proportional increase (90%) in oxygen consumption (MO2) to trout during steady-state swimming at 1.2 body lengths sec(-1), there was no increase in gill paracellular permeability, in contrast to trout. However, oscars did exhibit increased unidirectional Na(+) efflux and net K(+) rates during exercise, but no change in drinking rate. There were no changes in MRC numbers or exposure, or other alterations in gill morphology during exercise. A substantial interlamellar cell mass (ILCM) that covered the lamellae to a depth of 30% was unchanged by 4 h of swimming activity. We conclude that a low branchial paracellular permeability which can be dissociated from changes in O2 flux, as well as the presence of the ILCM, may be adaptive in limiting ionoregulatory costs for a species endemic to ion-poor, frequently hypoxic waters.


Fishes/metabolism , Gills/metabolism , Osmoregulation , Oxygen Consumption , Oxygen/metabolism , Respiration , Swimming , Adaptation, Physiological , Animals , Cell Hypoxia , Drinking , Gills/ultrastructure , Glomerular Filtration Rate , Permeability , Polyethylene Glycols/metabolism , Potassium/metabolism , Sodium/metabolism , Time Factors , Urination
7.
Ecotoxicol Environ Saf ; 111: 32-41, 2015 Jan.
Article En | MEDLINE | ID: mdl-25450912

The largest Brazilian terrestrial province of petroleum mining is located at the margins of Urucu River, Amazonas. Mined crude oil is transported along 400 km across Solimões River to be refined in Manaus. Thus, the main goal of this study was to evaluate the effects of crude oil exposure on biochemical, physiological and behavioral parameters of juveniles of the Amazonian fish tambaqui (Colossoma macropomum). The toxicity of water-soluble and insoluble oil fractions and the influence of a layer formed by the oil on the water surface from low and high concentrations of crude oil were analyzed. The results showed a strong physical effect of oil at the water surface and a significant effect on fish behavior. Swimming time and response to alarm substance decreased when fish was exposed for just one day to water insoluble fraction, and remain lower after 30 days of exposure, compared to control. Chronic exposure to water insoluble fraction of the inert oil also affected these two parameters. Critical swimming velocity decreased in fish exposed to both crude and inert oil water insoluble fraction. These reductions are possibly related to a decrease in aerobic capacity. Only exposure to high concentrations of petroleum water-soluble fractions induced transient alterations of the analyzed parameters. The exposure of fish to low and high concentrations of water insoluble fraction of Urucu oil caused a reduction of responses to alarm substance, spontaneous swimming activity and swimming capacity (Ucrit), decreased activity of acetylcholinesterase, and increased activity of alkaline phosphatase. Severe hypertrophy of lamellar epithelium and extensive lamellar fusion of the gills were also observed. Overall, these results show significant behavioral and physiological changes caused by the oil layer on the water surface, which means that toxicity of petroleum produced by its chemical components is, in fact, in this fish species, enhanced by the presence of an oil phase as a physical barrier.


Characiformes , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Acetylcholinesterase/metabolism , Animals , Brazil , Characiformes/anatomy & histology , Characiformes/metabolism , Characiformes/physiology , Gills/drug effects , Gills/pathology , Rivers , Swimming
8.
Arch Environ Contam Toxicol ; 65(2): 266-75, 2013 Aug.
Article En | MEDLINE | ID: mdl-23539120

Despite safety protocols, crude oil extraction and transportation in the Amazon basin has a potential for inadvertent oil spills, which can impact aquatic organisms in local rivers. The objective of this study was to assess the effects of crude oil on juvenile Amazonian fish tambaqui, Colossoma macropomum, at various biological levels. Furthermore, the effect of crude oil on response to alarm substance, an important communication system in fish, was reported for the first time. Fish exposed to crude oil showed a 90 % decrease in their response to alarm substance and a 60 % decrease in swimming activity relative to control fish. Basic hematology was not affected, although an increase of 200 % of DNA damage and an increase of GST activity were observed in animals exposed to crude oil. Inverse correlations were found between genotoxicity end points and behavioral parameters, suggesting that genotoxic end points can also reflect behavioral changes.


Behavior, Animal/drug effects , Characiformes , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Water Pollutants, Chemical/chemistry
9.
Arch Environ Contam Toxicol ; 64(4): 659-67, 2013 May.
Article En | MEDLINE | ID: mdl-23440445

This study aimed to evaluate oxidative stress parameters in juvenile tambaqui (Colossoma macropomum) exposed to 3.88 mg l(-1) Mn(2+) for 96 hours. Biomarkers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities, as well as content of reduced glutathione (GSH), were analyzed in gill, liver, brain, and kidney. The presence of Mn(2+) in the water corresponded to increased levels of Mn(2+) accumulation according to the following sequence: gill > kidney > brain > liver. There was a significant increase in TBARS levels (40 %) and SOD activity (80 %) in addition to a significant decrease in GSH content (41 %) in gills of fish exposed to waterborne Mn(2+). In hepatic tissue of the exposed animals, TBARS levels decreased significantly (35 %), whereas SOD (82 %) and GST activities (51 %) as well as GSH content (43 %) increased significantly. In brain of exposed juvenile fish, only significant decreases in SOD (32 %) and CAT activities (65 %) were observed. Moreover, the kidney of exposed fish showed a significant increase in TBARS levels (53 %) and a significant decrease in SOD activity (41 %) compared with the control. Thus, the changes in biomarkers of oxidative stress were different in the tissues, showing a specific toxicity of this metal to each organ.


Characiformes/physiology , Chlorides/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Gills/drug effects , Gills/metabolism , Kidney/drug effects , Kidney/metabolism , Life Cycle Stages/drug effects , Life Cycle Stages/physiology , Liver/drug effects , Liver/metabolism , Manganese Compounds , Oxidoreductases/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Toxicity Tests
10.
Ciênc. rural ; 41(8): 1482-1487, Aug. 2011. tab
Article En | LILACS | ID: lil-596928

The objective of this study was to investigate the effects of exposure to low water hardness (0, 25 and 50mg CaCO3L-1) into the 6.0-8.0 pH range to silver catfish juveniles (Rhamdia quelen) survival and growth after 32 days. Juveniles kept at zero water hardness presented higher mortality at pH 7.0 and 8.0 than those submitted to other treatments. Weight of juveniles exposed to pH 6.0 and zero water hardness was significantly higher than those kept at the same water hardness and other pH. Survival and growth of juveniles exposed to 25 and 50mg CaCO3 L-1 was not affected in the 6.0-8.0 pH range. Therefore, the best water hardness for silver catfish juveniles growth is 25-50mg CaCO3 L-1 and at low water hardness (next zero) pH must be reduced.


O objetivo deste estudo foi investigar os efeitos da exposição em baixas durezas da água (0; 25 e 50mg CaCO3 L-1) na faixa de pH 6,0-8,0 no crescimento e na sobrevivência de juvenis de jundiás (Rhamdia quelen). Os juvenis foram expostos aos tratamentos durante 32 dias. Os indivíduos mantidos em dureza zero da água apresentaram maior mortalidade em pH 7,0 e 8,0 do que aqueles submetidos aos outros tratamentos. O peso dos juvenis expostos ao pH 6,0 com zero dureza da água foram significativamente maiores do que aqueles mantidos na mesma dureza e em outras faixas de pH. A sobrevivência e o crescimento dos indivíduos expostos em 25 e 50mg CaCO3L-1 não foi afetado na faixa de pH 6,0-8,0. Portanto, a melhor dureza da água para o crescimento e de juvenis de jundiá é 25-50mg CaCO3 L-1 e em baixa dureza da água (próxima a zero) o pH deve ser reduzido.

11.
Neotrop. ichthyol ; 9(1): 147-152, Mar. 2011. tab
Article En | LILACS | ID: lil-583961

Altos níveis de nitrito (NO2-) podem ocorrer em sistemas de cultivo com alta densidade de estocagem, mas análises sobre os valores de concentração letal e o efeito do NO2 - em parâmetros metabólicos e no crescimento são escassos. Neste estudo foi analisada a concentração letal em 96 h (CL50-96h) para nitrito (NO2 -) em juvenis de jundiá, Rhamdia quelen, e o efeito de quatro níveis de nitrito (0,06; 0,46; 1,19 e 1,52 mg.L-1) no crescimento e no lactato, glicose, glicogênio e proteína hepática e muscular. A CL50-96h para NO2 - foi 20,46 (intervalo de confiança: 16,10-23,68) mg.L-1. No experimento de crescimento, a exposição ao NO2 não afetou o peso, comprimento ou taxa de crescimento específico, mas devido à mortalidade (66,7% e 100% após 20 e 40 dias, respectivamente), a biomassa dos juvenis expostos a 1,52 mg.L-1. NO2 - foi significativamente mais baixa que a biomassa dos juvenis expostos aos outros tratamentos. Deste modo, o nível seguro de NO2 - para o crescimento do jundiá é abaixo de 1,19 mg.L-1 (2% da CL50-96h). A exposição do jundiá ao NO2 - por 40 dias diminuiu os níveis de lactato no músculo, mas esses níveis aumentaram nos exemplares mantidos em 1,19 mg.L-1 NO2 -. Além disso, os níveis de glicose no músculo e fígado foram significativamente mais baixos nos jundiás expostos à concentração mais elevada de NO2 . Estes resultados indicam que a exposição crônica ao NO2 provoca uma oxidação anaeróbica do substrato para obtenção de energia.


High nitrite (NO2 -) levels may develop in aquaculture systems due to high fish density, but studies of lethal concentration values and the effect of NO2 - on metabolic parameters and growth are scarce. Consequently, in this study was verified the lethal concentration at 96 h (LC50-96h) for (NO2 -) in juvenile silver catfish, Rhamdia quelen and the effect of four waterborne NO2 - concentrations (0.06, 0.46, 1.19, and 1.52 mg.L-1) on growth, and hepatic and muscular lactate, glucose, glycogen and protein. Nitrite LC50-96h was 20.46 (confidence interval: 16.10-23.68) mg.L-1. In the growth experiment, exposure to NO2 - did not affect weight, length or specific growth rate, but due to mortality (66.7% and 100% after 20 and 40 days, respectively), biomass of juveniles exposed to 1.52 mg.L-1 NO2 - was significantly lower than the biomass of juveniles exposed to other treatments. Therefore, the safe level of nitrite for growth of silver catfish juveniles is below 1.19 mg.L-1 (2% of LC50-96h). Exposure of silver catfish to NO2 - for 40 days reduced lactate levels in muscle, but lactate levels increased in liver tissue of fish maintained at 1.19 mg.L-1 NO2 -. In addition, glucose levels in muscle and liver tissues were significantly lower in silver catfish exposed to the highest NO2 - level. These results indicate that chronic NO2 - exposure causes anaerobic substrate oxidation to meet energy demand.


Animals , Metabolism/genetics , Fishes/classification , Growth/genetics , Nitrites/analysis , Survivorship/physiology
12.
Ciênc. rural ; 39(6): 1768-1773, set. 2009. tab
Article En | LILACS | ID: lil-525303

Ionic contents (Na+, K+ and Cl-) of plasma and gallbladder bile (GB) of juveniles silver catfish, Rhamdia quelen (156.1±0.2g, 28.2±0.3cm), were determined in three different times (0, 6 and 24h) after exposure to: a) control or high dissolved oxygen (DO = 6.5mg L-1) + low NH3 (0.03mg L-1); b) low DO (3.5mg L-1) + low NH3; c) high DO + high NH3 (0.1mg L-1); and d) low DO + high NH3. High waterborne NH3 or low DO levels increased plasma and GB ion levels. These parameters might have followed different mechanisms to affect osmoregulation since a synergic effect of these variables was detected.


O conteúdo iônico (Na+, K+ e Cl-) do plasma e da bile vesicular (BV) de juvenis de jundiá, Rhamdia quelen (156,1±0,2g, 28,2±0,3cm), foi determinado em três diferentes tempos (0, 6 e 24h) após exposição a: a) controle ou alto oxigênio dissolvido (OD = 6,5mg L-1) + baixa NH3 (0,03mg L-1); b) baixo OD (3,5mg L-1) + baixa NH3; c) alto OD + alta NH3 (0,1mg L-1); e baixo OD + alta NH3 . Alta concentração de amônia ou baixo oxigênio dissolvido na água aumentaram os níveis iônicos no plasma e na BV. Aparentemente, os efeitos osmorregulatórios desses parâmetros podem estar relacionados a mecanismos distintos, pois foi detectado efeito sinérgico sobre essa alteração osmorregulatória.

13.
Chemosphere ; 77(3): 384-91, 2009 Oct.
Article En | MEDLINE | ID: mdl-19665757

The objective of this study was to evaluate the effect of chronic thorium (Th) exposure on bioaccumulation, metabolism (through biochemical parameters of the muscle) and oxidative parameters (lipidic peroxidation levels and antioxidant enzymes in the gills and in the hepatic and muscular tissues) of silver catfish (Rhamdia quelen). Silver catfish juveniles were exposed to different waterborne Th levels (in microg L(-1)): 0 (control), 25.3+/-3.2, 80.6+/-12.0, 242.4+/-35.6, and 747.2+/-59.1 for 30 d. The gills and skin were the organs that accumulated the highest Th levels. The increase in the waterborne Th concentration corresponded to a progressive increase in the Th levels in the gills and kidney. Chronic Th exposure causes alterations in the oxidative parameters of silver catfish gills, which are correlated with the Th accumulation in this organ. The levels of GST decreased in the gills of fish exposed to 747.2 microg L(-1) Th and SOD activity decreased in silver catfish exposed to 242.4 and 747.2 microg L(-1) Th. In addition, the increase in the LPO in the gills exposed to 242.4 and 747.2 microg L(-1) Th suggests that higher oxidative damage occurred in the gills. However, in the liver and muscle, these alterations occurred mainly in the lowest waterborne Th level. Metabolic intermediates in the muscle were altered by Th exposure, but no clear relationship was found.


Catfishes/metabolism , Thorium/metabolism , Thorium/toxicity , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Ammonia/metabolism , Animals , Biomarkers/metabolism , Fish Proteins/metabolism , Gills/metabolism , Glucose/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Liver/metabolism , Oxidative Stress
14.
Arch Environ Contam Toxicol ; 56(4): 770-5, 2009 May.
Article En | MEDLINE | ID: mdl-19221686

The objective of the present study was to analyze the effect of chronic cadmium (Cd) exposure at two alkalinity levels (63 and 92 mg l(-1) CaCO(3)) on the antipredatory behavior of juvenile silver catfish (Rhamdia quelen) exposed to conspecific skin extract and predator odor. At an alkalinity of 63 mg l(-1) CaCO(3), 30 days of exposure to either 4.5 or 8.0 microg l(-1) Cd impaired the catfish's antipredatory response to alarm cues. However, silver catfish exposed to 4.5 microg l(-1) Cd at an alkalinity of 92 mg l(-1) CaCO(3) responded to skin extract and predator odor. In catfish exposed to 8.0 microg l(-1) Cd at the same alkalinity, only the number of feeding bites decreased, and this occurred only for specimens exposed to predator odor. Our results show that higher alkalinity protected against the deleterious effects of Cd on alarm cue detection but only in the larvae exposed to the lowest waterborne Cd level.


Avoidance Learning/drug effects , Cadmium/toxicity , Carbonates/toxicity , Catfishes/physiology , Cues , Escape Reaction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Avoidance Learning/physiology , Catfishes/growth & development , Escape Reaction/physiology , Fear/drug effects , Humans , Hydrogen-Ion Concentration , Life Cycle Stages/drug effects , Life Cycle Stages/physiology , Male , Odorants/prevention & control , Skin/chemistry , Skin/metabolism
15.
Aquat Toxicol ; 88(4): 250-6, 2008 Jul 30.
Article En | MEDLINE | ID: mdl-18571249

The objective of this study was to evaluate the effect of thorium (Th) bioaccumulation on the metabolism of silver catfish (Rhamdia quelen) through biochemical parameters of the muscle (glycogen, glucose, lactate, protein, and ammonia). In addition, lipidic peroxidation levels (TBARS), catalase (CAT) and glutathione-S-transferase (GST) in the gills and in hepatic and muscular tissues were also analyzed. Cytogenetic parameters were studied through the evaluation of nuclear abnormalities in red blood cells. Silver catfish juveniles were exposed to different waterborne Th levels (in microg L(-1)): 0 (control), 25.3+/-3.2, 69.2+/-2.73, 209.5+/-17.6, and 608.7+/-61.1 for 15 days. The organs that accumulated the highest Th levels were the gills and skin. The increase of waterborne Th concentration corresponded to a progressive increase of Th levels in the gills, liver, skin and kidneys, with the highest accumulation in the gills and skin. Metabolic intermediates in the muscle were altered by Th exposure, but no clear relationship was found. CAT and GST activities in the hepatic and muscular tissues of this species suggest that the enzymatic activities can be stimulated at the lowest Th levels and inhibited at the higher levels (mainly in 608.7 microg L(-1)). The results of the cytogenetic assay contribute to this hypothesis because the higher toxicity in blood samples was found in juveniles exposed to 69.2 and 209.5 microg L(-1) Th.


Catfishes/metabolism , Muscle, Skeletal/metabolism , Thorium/pharmacokinetics , Ammonia/metabolism , Analysis of Variance , Animals , Catalase/metabolism , Dose-Response Relationship, Drug , Glucose/metabolism , Glutathione Transferase/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Micronucleus Tests , Thiobarbituric Acid Reactive Substances/metabolism , Thorium/blood
16.
Arch Environ Contam Toxicol ; 54(2): 274-82, 2008 Feb.
Article En | MEDLINE | ID: mdl-17768591

The present study evaluated the effect of waterborne Cd in eggs and larvae of silver catfish, Rhamdia quelen, at two alkalinity levels (63 and 92 mg . L(-1) CaCO(3)): 0.5 (control), 4.5, 8, and 18 microg . L(-1) Cd. The fertilization rate was similar in all treatments, but the number of eggs with irregular surface was significantly higher in those exposed to 18 microg . L(-1) Cd and 63 mg . L(-1) CaCO(3). Three days after hatching survival of larvae exposed to 4.5 and 8 microg . L(-1) Cd and 63 mg . L(-1) CaCO(3) was significantly lower than that of control larvae, and 21 days after hatching survival decreased with the increase in waterborne Cd levels and total cadmium accumulation in the larvae. These significant differences and relationships were not observed in larvae maintained at 92 mg . L(-1) CaCO(3). Furthermore, in the lower alkalinity, a higher incidence of barbels and spinal column deformities was observed in the highest waterborne Cd concentration. At the end of the experimental period, 21 days after hatching, larval survival rate, length, weight, head height, membranous layer thickness, and biomass decreased with the increase in waterborne Cd levels in the lower alkalinity. However, these relationships were not observed in larvae maintained at 92 mg . L(-1) CaCO(3). The percentage specific growth rate was lower in larvae exposed to the highest waterborne Cd concentration at 63 mg . L(-1) CaCO(3). These results suggest that alkalinity of 92 mg . L(-1) CaCO(3) reduces waterborne Cd toxicity in silver catfish larvae.


Cadmium/toxicity , Calcium Carbonate/analysis , Catfishes , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Animals , Body Size/drug effects , Cadmium/pharmacokinetics , Catfishes/abnormalities , Catfishes/growth & development , Catfishes/metabolism , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Spine/abnormalities , Spine/drug effects , Water Pollutants, Chemical/pharmacokinetics , Zygote/drug effects , Zygote/growth & development , Zygote/metabolism
...