Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Am Heart J ; 271: 28-37, 2024 May.
Article En | MEDLINE | ID: mdl-38369218

BACKGROUND: Previous studies have suggested that there is wide variability in cardiac intensive care unit (CICU) length of stay (LOS); however, these studies are limited by the absence of detailed risk assessment at the time of admission. Thus, we evaluated inter-hospital differences in CICU LOS, and the association between LOS and in-hospital mortality. METHODS: Using data from the Critical Care Cardiology Trials Network (CCCTN) registry, we included 22,862 admissions between 2017 and 2022 from 35 primarily tertiary and quaternary CICUs that captured consecutive admissions in annual 2-month snapshots. The primary analysis compared inter-hospital differences in CICU LOS, as well as the association between CICU LOS and all-cause in-hospital mortality using a Fine and Gray competing risk model. RESULTS: The overall median CICU LOS was 2.2 (1.1-4.8) days, and the median hospital LOS was 5.9 (2.8-12.3) days. Admissions in the longest tertile of LOS tended to be younger with higher rates of pre-existing comorbidities, and had higher Sequential Organ Failure Assessment (SOFA) scores, as well as higher rates of mechanical ventilation, intravenous vasopressor use, mechanical circulatory support, and renal replacement therapy. Unadjusted all-cause in-hospital mortality was 9.3%, 6.7%, and 13.4% in the lowest, intermediate, and highest CICU LOS tertiles. In a competing risk analysis, individual patient CICU LOS was correlated (r2 = 0.31) with a higher risk of 30-day in-hospital mortality. The relationship remained significant in admissions with heart failure, ST-elevation myocardial infarction and non-ST segment elevation myocardial infarction. CONCLUSIONS: In a large registry of academic CICUs, we observed significant variation in CICU LOS and report that LOS is independently associated with all-cause in-hospital mortality. These findings could potentially be used to improve CICU resource utilization planning and refine risk prognostication in critically ill cardiovascular patients.


Coronary Care Units , Hospital Mortality , Length of Stay , Registries , Humans , Hospital Mortality/trends , Male , Female , Length of Stay/statistics & numerical data , Aged , Middle Aged , Coronary Care Units/statistics & numerical data , Risk Assessment/methods , Critical Care/statistics & numerical data , United States/epidemiology
3.
Int J Artif Organs ; 43(3): 165-172, 2020 Mar.
Article En | MEDLINE | ID: mdl-31630619

Following implantation of continuous-flow left ventricular assist devices, mechanical off-loading results in improved resting hemodynamics; however, peak exercise capacity generally does not increase substantially. This study evaluated patients supported by continuous-flow left ventricular assist devices who were invasively monitored during exercise to define parameters that underpin exercise capacity and outcomes. A review of all patients supported by continuous-flow left ventricular assist devices who underwent supine bicycle ergometry exercise testing with measurement of pulmonary gas exchange during right heart catheterization for evaluation of dyspnea at one institution between 2007 and 2018 was performed (n = 22). The primary outcome of this investigation was death or heart failure hospitalization. Although resting filling pressures were relatively preserved, resting cardiac index (Fick) was low (2.1 ± 0.5 mL/kg/min). An impaired cardiac output reserve was present in 75% of patients. On univariate modeling, patients with supine exercise-induced hypoxemia (O2 saturation <90%) experienced significantly diminished hospitalization-free survival (unadjusted hazard ratio = 11.0, confidence interval = 2.4-57.2, p = 0.003), which persisted despite adjustment for right heart catheterization peak VO2 and peak cardiac output (adjusted hazard ratio = 25, confidence interval = 3.6-322, p = 0.001). Our findings suggest that supine exercise testing provides additional prognostic utility in the continuous-flow left ventricular assist device population.


Exercise/physiology , Heart Failure , Heart-Assist Devices , Hypoxia , Prosthesis Implantation/adverse effects , Cardiac Catheterization/methods , Cardiac Output/physiology , Exercise Test/methods , Female , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/physiopathology , Heart Failure/surgery , Hospitalization/statistics & numerical data , Humans , Hypoxia/etiology , Hypoxia/physiopathology , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prosthesis Implantation/instrumentation , Prosthesis Implantation/methods , Survival Analysis
4.
EBioMedicine ; 47: 446-456, 2019 Sep.
Article En | MEDLINE | ID: mdl-31542391

BACKGROUND: Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. METHODS: In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ±â€¯3·1 years old; 2 female; BMI:33·9 ±â€¯2·3 kg/m2; eGFR:27·0 ±â€¯2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. FINDINGS: D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated ß-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and -12. INTERPRETATION: "Hit-and-run" treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. FUND: NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.


Cellular Senescence/drug effects , Dasatinib/pharmacology , Diabetic Nephropathies/metabolism , Quercetin/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Aged , Biomarkers , Biopsy , Clinical Trials, Phase I as Topic , Dasatinib/therapeutic use , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/drug therapy , Drug Therapy, Combination , Female , Humans , Immunohistochemistry , Kidney Function Tests , Macrophages/drug effects , Macrophages/metabolism , Male , Middle Aged , Quercetin/therapeutic use
...