Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Article En | MEDLINE | ID: mdl-32923886

PURPOSE: Despite the high frequency of EGFR genetic alterations in glioblastoma (GBM), EGFR-targeted therapies have not had success in this disease. To improve the likelihood of efficacy, we targeted adult patients with recurrent GBM enriched for EGFR gene amplification, which occurs in approximately half of GBM, with dacomitinib, a second-generation, irreversible epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that penetrates the blood-brain barrier, in a multicenter phase II trial. PATIENTS AND METHODS: We retrospectively explored whether previously described EGFR extracellular domain (ECD)-sensitizing mutations in the context of EGFR gene amplification could predict response to dacomitinib, and in a predefined subset of patients, we measured post-treatment intratumoral dacomitinib levels to verify tumor penetration. RESULTS: We found that dacomitinib effectively penetrates contrast-enhancing GBM tumors. Among all 56 treated patients, 8 (14.3%) had a clinical benefit as defined by a duration of treatment of at least 6 months, of whom 5 (8.9%) remained progression free for at least 1 year. Presence of EGFRvIII or EGFR ECD missense mutation was not associated with clinical benefit. We evaluated the pretreatment transcriptome in circulating extracellular vesicles (EVs) by RNA sequencing in a subset of patients and identified a signature that distinguished patients who had durable benefit versus those with rapid progression. CONCLUSION: While dacomitinib was not effective in most patients with EGFR-amplified GBM, a subset experienced a durable, clinically meaningful benefit. Moreover, EGFRvIII and EGFR ECD mutation status in archival tumors did not predict clinical benefit. RNA signatures in circulating EVs may warrant investigation as biomarkers of dacomitinib efficacy in GBM.

2.
Clin Cancer Res ; 26(7): 1690-1699, 2020 04 01.
Article En | MEDLINE | ID: mdl-31900275

PURPOSE: Emergence of mismatch repair (MMR) deficiency is a frequent mechanism of acquired resistance to the alkylating chemotherapeutic temozolomide (TMZ) in gliomas. Poly(ADP-ribose) polymerase inhibitors (PARPi) have been shown to potentiate TMZ cytotoxicity in several cancer types, including gliomas. We tested whether PARP inhibition could re-sensitize MSH6-null MMR-deficient gliomas to TMZ, and assessed the role of the base excision repair (BER) DNA damage repair pathway in PARPi-mediated effects. EXPERIMENTAL DESIGN: Isogenic pairs of MSH6 wild-type and MSH6-inactivated human glioblastoma (GBM) cells (including both IDH1/2 wild-type and IDH1 mutant), as well as MSH6-null cells derived from a patient with recurrent GBM were treated with TMZ, the PARPi veliparib or olaparib, and combination thereof. Efficacy of PARPi combined with TMZ was assessed in vivo. We used genetic and pharmacological approaches to dissect the contribution of BER. RESULTS: While having no detectable effect in MSH6 wild-type GBMs, PARPi selectively restored TMZ sensitivity in MSH6-deficient GBM cells. This genotype-specific restoration of activity translated in vivo, where combination treatment of veliparib and TMZ showed potent suppression of tumor growth of MSH6-inactivated orthotopic xenografts, compared with TMZ monotherapy. Unlike PARPi, genetic and pharmacological blockage of BER pathway did not re-sensitize MSH6-inactivated GBM cells to TMZ. Similarly, CRISPR PARP1 knockout did not re-sensitize MSH6-inactivated GBM cells to TMZ. CONCLUSIONS: PARPi restoration of TMZ chemosensitivity in MSH6-inactivated glioma represents a promising strategy to overcome acquired chemoresistance caused by MMR deficiency. Mechanistically, this PARPi-mediated synthetic phenotype was independent of BER blockage and was not recapitulated by loss of PARP1.


DNA Mismatch Repair , DNA Repair , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Temozolomide/pharmacology , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 25(14): 4375-4387, 2019 07 15.
Article En | MEDLINE | ID: mdl-30975663

PURPOSE: Oligodendroglioma has a relatively favorable prognosis, however, often undergoes malignant progression. We hypothesized that preclinical models of oligodendroglioma could facilitate identification of therapeutic targets in progressive oligodendroglioma. We established multiple oligodendroglioma xenografts to determine if the PI3K/AKT/mTOR signaling pathway drives tumor progression. EXPERIMENTAL DESIGN: Two anatomically distinct tumor samples from a patient who developed progressive anaplastic oligodendroglioma (AOD) were collected for orthotopic transplantation in mice. We additionally implanted 13 tumors to investigate the relationship between PI3K/AKT/mTOR pathway alterations and oligodendroglioma xenograft formation. Pharmacologic vulnerabilities were tested in newly developed AOD models in vitro and in vivo. RESULTS: A specimen from the tumor site that subsequently manifested rapid clinical progression contained a PIK3CA mutation E542K, and yielded propagating xenografts that retained the OD/AOD-defining genomic alterations (IDH1 R132H and 1p/19q codeletion) and PIK3CA E542K, and displayed characteristic sensitivity to alkylating chemotherapeutic agents. In contrast, a xenograft did not engraft from the region that was clinically stable and had wild-type PIK3CA. In our panel of OD/AOD xenografts, the presence of activating mutations in the PI3K/AKT/mTOR pathway was consistently associated with xenograft establishment (6/6, 100%). OD/AOD that failed to generate xenografts did not have activating PI3K/AKT/mTOR alterations (0/9, P < 0.0001). Importantly, mutant PIK3CA oligodendroglioma xenografts were vulnerable to PI3K/AKT/mTOR pathway inhibitors in vitro and in vivo-evidence that mutant PIK3CA is a tumorigenic driver in oligodendroglioma. CONCLUSIONS: Activation of the PI3K/AKT/mTOR pathway is an oncogenic driver and is associated with xenograft formation in oligodendrogliomas. These findings have implications for therapeutic targeting of PI3K/AKT/mTOR pathway activation in progressive oligodendrogliomas.


Brain Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/metabolism , Oligodendroglioma/pathology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Mice , Mice, SCID , Oligodendroglioma/drug therapy , Oligodendroglioma/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 17(12): 2551-2563, 2018 12.
Article En | MEDLINE | ID: mdl-30217967

Mismatch repair (MMR) deficiency through MSH6 inactivation has been identified in up to 30% of recurrent high-grade gliomas, and represents a key molecular mechanism underlying the acquired resistance to the alkylating agent temozolomide (TMZ). To develop a therapeutic strategy that could be effective in these TMZ-refractory gliomas, we first screened 13 DNA damage response modulators for their ability to suppress viability of MSH6-inactivated, TMZ-resistant glioma cells. We identified a PLK1 selective inhibitor, Volasertib, as the most potent in inhibiting proliferation of glioblastoma cells. PLK1 inhibition induced mitotic catastrophe, G2-M cell-cycle arrest, and DNA damage, leading to caspase-mediated apoptosis in glioblastoma cells. Importantly, therapeutic effects of PLK1 inhibitors were not influenced by MSH6 knockdown, indicating that their action is independent of MMR status of the cells. Systemic treatment with Volasertib potently inhibited tumor growth in an MMR-deficient, TMZ-resistant glioblastoma xenograft model. Further in vitro testing in established and patient-derived cell line panels revealed an association of PLK1 inhibitor efficacy with cellular Myc expression status. We found that cells with deregulated Myc are vulnerable to PLK1 inhibition, as Myc overexpression sensitizes, whereas its silencing desensitizes, glioblastoma cells to PLK1 inhibitors. This discovery is clinically relevant as glioma progression post-TMZ treatment is frequently accompanied by MYC genomic amplification and/or pathway activation. In conclusion, PLK inhibitor represents a novel therapeutic option for recurrent gliomas, including those TMZ-resistant from MMR deficiency. Genomic MYC alteration may serve as a biomarker for PLK inhibitor sensitivity, as Myc-driven tumors demonstrated pronounced responses.


Cell Cycle Proteins/antagonists & inhibitors , DNA Mismatch Repair , Drug Resistance, Neoplasm , Glioma/drug therapy , Glioma/pathology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Temozolomide/therapeutic use , Animals , Biomarkers, Tumor/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , DNA Mismatch Repair/drug effects , DNA-Binding Proteins/metabolism , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Female , Gene Silencing/drug effects , Humans , Mice, Nude , Mitosis/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Pteridines/pharmacology , Temozolomide/pharmacology , Up-Regulation/drug effects , Polo-Like Kinase 1
5.
Proc Natl Acad Sci U S A ; 115(36): E8388-E8394, 2018 09 04.
Article En | MEDLINE | ID: mdl-30082399

Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting.


Brain Neoplasms , Cyanides/pharmacology , Genotype , Glioma , Guanidines/pharmacology , Isocitrate Dehydrogenase/genetics , Molecular Targeted Therapy/methods , Mutation , Neoplasm Proteins/genetics , Animals , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Drug Delivery Systems/methods , Female , Glioma/drug therapy , Glioma/enzymology , Glioma/genetics , Humans , Male , Mice , Mice, SCID , Xenograft Model Antitumor Assays
6.
Cancer Res ; 77(15): 4102-4115, 2017 08 01.
Article En | MEDLINE | ID: mdl-28625978

IDH1-mutant gliomas are dependent upon the canonical coenzyme NAD+ for survival. It is known that PARP activation consumes NAD+ during base excision repair (BER) of chemotherapy-induced DNA damage. We therefore hypothesized that a strategy combining NAD+ biosynthesis inhibitors with the alkylating chemotherapeutic agent temozolomide could potentiate NAD+ depletion-mediated cytotoxicity in mutant IDH1 cancer cells. To investigate the impact of temozolomide on NAD+ metabolism, patient-derived xenografts and engineered mutant IDH1-expressing cell lines were exposed to temozolomide, in vitro and in vivo, both alone and in combination with nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, which block NAD+ biosynthesis. The acute time period (<3 hours) after temozolomide treatment displayed a burst of NAD+ consumption driven by PARP activation. In IDH1-mutant-expressing cells, this consumption reduced further the abnormally lowered basal steady-state levels of NAD+, introducing a window of hypervulnerability to NAD+ biosynthesis inhibitors. This effect was selective for IDH1-mutant cells and independent of methylguanine methyltransferase or mismatch repair status, which are known rate-limiting mediators of adjuvant temozolomide genotoxic sensitivity. Combined temozolomide and NAMPT inhibition in an in vivo IDH1-mutant cancer model exhibited enhanced efficacy compared with each agent alone. Thus, we find IDH1-mutant cancers have distinct metabolic stress responses to chemotherapy-induced DNA damage and that combination regimens targeting nonredundant NAD+ pathways yield potent anticancer efficacy in vivo Such targeting of convergent metabolic pathways in genetically selected cancers could minimize treatment toxicity and improve durability of response to therapy. Cancer Res; 77(15); 4102-15. ©2017 AACR.


Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/analogs & derivatives , Glioma/metabolism , Stress, Physiological/drug effects , Acrylamides/pharmacology , Animals , Cell Line, Tumor , Dacarbazine/pharmacology , Enzyme Inhibitors/pharmacology , Female , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Mice , Mice, SCID , Mutation , NAD , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Piperidines/pharmacology , Random Allocation , Temozolomide , Xenograft Model Antitumor Assays
7.
Oncotarget ; 8(65): 109228-109237, 2017 Dec 12.
Article En | MEDLINE | ID: mdl-29312603

BACKGROUND: Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. METHODS: We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients' progression and overall survival. RESULTS: Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 - 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). CONCLUSIONS: In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more aggressive meningiomas. Stratification for TERT alterations should be adopted in future clinical trials of progressive/higher-grade meningiomas.

8.
Cancer Cell ; 28(6): 773-784, 2015 Dec 14.
Article En | MEDLINE | ID: mdl-26678339

Heterozygous mutation of IDH1 in cancers modifies IDH1 enzymatic activity, reprogramming metabolite flux and markedly elevating 2-hydroxyglutarate (2-HG). Here, we found that 2-HG depletion did not inhibit growth of several IDH1 mutant solid cancer types. To identify other metabolic therapeutic targets, we systematically profiled metabolites in endogenous IDH1 mutant cancer cells after mutant IDH1 inhibition and discovered a profound vulnerability to depletion of the coenzyme NAD+. Mutant IDH1 lowered NAD+ levels by downregulating the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (Naprt1), sensitizing to NAD+ depletion via concomitant nicotinamide phosphoribosyltransferase (NAMPT) inhibition. NAD+ depletion activated the intracellular energy sensor AMPK, triggered autophagy, and resulted in cytotoxicity. Thus, we identify NAD+ depletion as a metabolic susceptibility of IDH1 mutant cancers.


Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Isocitrate Dehydrogenase/genetics , Mutation , NAD/deficiency , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/drug effects , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cytokines/metabolism , Energy Metabolism/drug effects , Enzyme Activation , Female , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Glutarates/metabolism , HEK293 Cells , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Metabolomics/methods , Mice, SCID , Molecular Targeted Therapy , Nicotinamide Phosphoribosyltransferase/metabolism , Pentosyltransferases/metabolism , Signal Transduction/drug effects , Spheroids, Cellular , Time Factors , Transfection , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
...