Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Curr Protoc ; 2(11): e618, 2022 Nov.
Article En | MEDLINE | ID: mdl-36426921

Recent advances in super resolution microscopy have enabled imaging at the 10-20 nm scale on a light microscope, providing unprecedented details of native biological structures and processes in intact and hydrated samples. Of the existing strategies, DNA points accumulation in imaging nanoscale topography (DNA-PAINT) affords convenient multiplexing, an important feature in interrogating complex biological systems. A practical limitation of DNA-PAINT, however, has been the slow imaging speed. In its original form, DNA-PAINT imaging of each target takes tens of minutes to hours to complete. To address this challenge, several improved implementations have been introduced. These include DNA-PAINT-ERS (where E = ethylene carbonate; R = repeat sequence; S = spacer), a set of strategies that leads to both accelerated DNA-PAINT imaging speed and improved image quality. With DNA-PAINT-ERS, imaging of typical cellular targets such as microtubules takes only 5-10 min. Importantly, DNA-PAINT-ERS also facilitates multiplexing and can be easily integrated into current workflows for fluorescence staining of biological samples. Here, we provide a detailed, step-by-step guide for fast and multiplexed DNA-PAINT-ERS imaging of fixed and immunostained cells grown on glass substrates as adherent monolayers. The protocol should be readily extended to biological samples of a different format (for example tissue sections) or staining mechanisms (for example using nanobodies). © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of probes for DNA-PAINT-ERS Basic Protocol 2: Sample preparation for imaging membrane targets with DNA-PAINT-ERS in fixed cells Alternate Protocol: Immunostaining of extracted U2OS cells Basic Protocol 3: Super resolution image acquisition and analysis.


DNA , Microtubules , Microscopy, Fluorescence/methods , DNA/chemistry , Staining and Labeling
2.
Sci Rep ; 12(1): 20535, 2022 11 29.
Article En | MEDLINE | ID: mdl-36446811

The regulated translocation of the glucose transporter, GLUT4, to the surface of adipocytes and muscle is a key action of insulin. This is underpinned by the delivery and fusion of GLUT4-containing vesicles with the plasma membrane. Recent studies have revealed that a further action of insulin is to mediate the dispersal of GLUT4 molecules away from the site of GLUT4 vesicle fusion with the plasma membrane. Although shown in adipocytes, whether insulin-stimulated dispersal occurs in other cells and/or is exhibited by other proteins remains a matter of debate. Here we show that insulin stimulates GLUT4 dispersal in the plasma membrane of adipocytes, induced pluripotent stem cell-derived cardiomyocytes and HeLa cells, suggesting that this phenomenon is specific to GLUT4 expressed in all cell types. By contrast, insulin-stimulated dispersal of TfR was not observed in HeLa cells, suggesting that the mechanism may be unique to GLUT4. Consistent with dispersal being an important physiological mechanism, we observed that insulin-stimulated GLUT4 dispersal is reduced under conditions of insulin resistance. Adipocytes of different sizes have been shown to exhibit distinct metabolic properties: larger adipocytes exhibit reduced insulin-stimulated glucose transport compared to smaller cells. Here we show that both GLUT4 delivery to the plasma membrane and GLUT4 dispersal are reduced in larger adipocytes, supporting the hypothesis that larger adipocytes are refractory to insulin challenge compared to their smaller counterparts, even within a supposedly homogeneous population of cells.


Adipocytes , Insulin , Humans , HeLa Cells , Cell Size , Insulin/pharmacology , Translocation, Genetic , Myocytes, Cardiac
3.
Biomolecules ; 12(8)2022 07 26.
Article En | MEDLINE | ID: mdl-35892343

Recent work suggests that Ras small GTPases interact with the anionic lipid phosphatidylserine (PS) in an isoform-specific manner, with direct implications for their biological functions. Studies on PS-Ras associations in cells, however, have relied on immuno-EM imaging of membrane sheets. To study their spatial relationships in intact cells, we have combined the use of Lact-C2-GFP, a biosensor for PS, with multicolor super resolution imaging based on DNA-PAINT. At ~20 nm spatial resolution, the resulting super resolution images clearly show the nonuniform molecular distribution of PS on the cell membrane and its co-enrichment with caveolae, as well as with unidentified membrane structures. Two-color imaging followed by spatial analysis shows that KRas-G12D and HRas-G12V both co-enrich with PS in model U2OS cells, confirming previous observations, yet exhibit clear differences in their association patterns. Whereas HRas-G12V is almost always co-enriched with PS, KRas-G12D is strongly co-enriched with PS in about half of the cells, with the other half exhibiting a more moderate association. In addition, perturbations to the actin cytoskeleton differentially impact PS association with the two Ras isoforms. These results suggest that PS-Ras association is context-dependent and demonstrate the utility of multiplexed super resolution imaging in defining the complex interplay between Ras and the membrane.


Microscopy , Phosphatidylserines , Cell Membrane/metabolism , Phosphatidylserines/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism
4.
Biosci Rep ; 42(7)2022 07 29.
Article En | MEDLINE | ID: mdl-35735144

Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.


1-Phosphatidylinositol 4-Kinase , Insulin , 1-Phosphatidylinositol 4-Kinase/metabolism , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Biological Transport , Cell Membrane/metabolism , Glucose/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Insulin/pharmacology , Mice
5.
Genes (Basel) ; 13(2)2022 01 25.
Article En | MEDLINE | ID: mdl-35205266

Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.


Signal Transduction , ras Proteins , Cell Membrane/metabolism , Protein Processing, Post-Translational , ras Proteins/genetics , ras Proteins/metabolism
6.
PeerJ ; 8: e8751, 2020.
Article En | MEDLINE | ID: mdl-32185116

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA-GLUT4-GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.

7.
Psychoneuroendocrinology ; 74: 111-120, 2016 12.
Article En | MEDLINE | ID: mdl-27608360

Animal models and human studies using paradigms designed to stimulate endogenous oxytocin release suggest a stress-buffering role of oxytocin. We here examined the involvement of stress-induced peripheral oxytocin secretion in reactivity and recovery phases of the human psychosocial stress response. Healthy male and female participants (N=114) were subjected to a standardized laboratory stressor, the Trier Social Stress Test. In addition to plasma oxytocin, cortisol was assessed as a marker of hypothalamic-pituitary-adrenal (HPA-) axis activity, alpha-amylase and heart rate as markers of sympathetic activity, high frequency heart rate variability as a marker of vagal tone and self-rated anxiety as an indicator of subjective stress experience. On average, oxytocin levels increased by 51% following psychosocial stress. The stress-induced oxytocin secretion, however, did not reduce stress reactivity. To the contrary, higher oxytocin secretion was associated with greater cortisol reactivity and peak cortisol levels in both sexes. In the second phase of the stress response the opposite pattern was observed, with higher oxytocin secretion associated with faster vagal recovery. We suggest that after an early stage of oxytocin and HPA-axis co-activation, the stress-reducing action of oxytocin unfolds. Due to the time lag it manifests as a recovery-boosting rather than a reactivity-buffering effect. By reinforcing parasympathetic autonomic activity, specifically during stress recovery, oxytocin may provide an important protective function against the health-compromising effects of sustained stress.


Anxiety , Heart Rate/physiology , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/physiology , Oxytocin/metabolism , Parasympathetic Nervous System/physiology , Pituitary-Adrenal System/physiology , Stress, Psychological , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Adult , Anxiety/metabolism , Anxiety/physiopathology , Female , Humans , Hypothalamo-Hypophyseal System/metabolism , Male , Middle Aged , Parasympathetic Nervous System/metabolism , Pituitary-Adrenal System/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Sympathetic Nervous System/metabolism , Young Adult , alpha-Amylases/metabolism
...