Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Nanophotonics ; 13(10): 1759-1764, 2024 Apr.
Article En | MEDLINE | ID: mdl-38681676

Heterodyne detection based on interband cascade lasers (ICL) has been demonstrated in a wide range of different applications. However, it is still often limited to bulky tabletop systems using individual components such as dual laser setups, beam shaping elements, and discrete detectors. In this work, a versatile integrated ICL platform is investigated for tackling this issue. A RF-optimized, two-section ICL approach is employed, consisting of a short section typically used for efficient modulation of the cavity field and a long gain section. Such a laser is operated in reversed mode, with the entire Fabry-Pérot waveguide utilized as a semiconductor optical amplifier (SOA) and the electrically separated short section as detector. Furthermore, a racetrack cavity is introduced as on-chip single-mode reference generator. The field of the racetrack cavity is coupled into the SOA waveguide via an 800 nm gap. By external injection of a single mode ICL operating at the appropriate wavelength, a heterodyne beating between the on-chip reference and the injected signal can be observed on the integrated detector section of the SOA-detector.

2.
ACS Photonics ; 11(2): 395-403, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38405392

Many precision applications in the mid-infrared spectral range have strong constraints based on quantum effects that are expressed in particular noise characteristics. They limit, e.g., sensitivity and resolution of mid-infrared imaging and spectroscopic systems as well as the bit-error rate in optical free-space communication. Interband cascade lasers (ICLs) are a class of mid-infrared lasers exploiting interband transitions in type-II band alignment geometry. They are currently gaining significant importance for mid-infrared applications from < 3 to > 6 µm wavelength, enabled by novel types of high-performance ICLs such as ring-cavity devices. Their noise behavior is an important feature that still needs to be thoroughly analyzed, including its potential reduction with respect to the shot-noise limit. In this work, we provide a comprehensive characterization of λ = 3.8 µm-emitting, continuous-wave ring ICLs operating at room temperature. It is based on an in-depth study of their main physical intensity noise features such as their bias-dependent intensity noise power spectral density and relative intensity noise. We obtained shot-noise-limited statistics for Fourier frequencies above 100 kHz. This is an important result for precision applications, e.g., interferometry or advanced spectroscopy, which benefit from exploiting the advantage of using such a shot-noise-limited source, enhancing the setup sensitivity. Moreover, it is an important feature for novel quantum optics schemes, including testing specific light states below the shot-noise level, such as squeezed states.

3.
Appl Spectrosc ; 77(9): 1073-1086, 2023 Sep.
Article En | MEDLINE | ID: mdl-37525897

The analytical performance of a compact infrared attenuated total reflection spectrometer using a pyroelectric detector array has been evaluated and compared to a conventional laboratory Fourier transform infrared system for applications in food analysis. Analytical characteristics including sensitivity, repeatability, linearity of the calibration functions, signal-to-noise ratio, and spectral resolution have been derived for both approaches. Representative analytes of relevance in food industries (i.e., organic solvents, fatty acids, and mycotoxins) have been used for the assessment of the performance of the device and to discuss the potential of this technology in food and feed analysis.


Fatty Acids , Food Analysis , Spectroscopy, Fourier Transform Infrared , Fatty Acids/analysis
4.
Nanomaterials (Basel) ; 12(6)2022 Mar 21.
Article En | MEDLINE | ID: mdl-35335836

Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 2-4 µm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor's electrical response and how they allow controlling the device's sensing abilities.

5.
Appl Spectrosc ; 75(3): 336-342, 2021 Mar.
Article En | MEDLINE | ID: mdl-33215517

The detection and measurement of hydrocarbons are of high interest for a variety of applications, for example within the oil and gas industry from extraction throughout the complete refining process, as well as for environmental monitoring and for portable safety devices. This paper presents a highly sensitive, selective, and robust tunable laser analyzer that has the capability to analyze several components in a gas sample stream. More specifically, a multi-gas system for simultaneous detection of C1 to iC5 hydrocarbons, using a room temperature distributed feedback interband cascade laser array, emitting in the 3.3 µm band has been realized. It combines all the advantages of the tunable laser spectroscopy method for a fast, sensitive, and selective in-line multicomponent tunable laser analyzer. Capable of continuous and milliseconds fast monitoring of C1-iC5 hydrocarbon compositions in a process stream, the analyzer requires no consumables (e.g., purging, carrier gas) and no in-field calibration, enabling a low cost of ownership for the analyzer. The system was built based on an industrial GasEye series platform and deployed for the first time in field at Preem refinery in Lysekil, Sweden, in autumn 2018. Results of the measurement campaign and comparison with gas chromatography instrumentation are presented.

6.
Opt Express ; 27(16): 23059-23066, 2019 Aug 05.
Article En | MEDLINE | ID: mdl-31510588

Laser light sources are routinely applied building blocks in optical sensor technologies. While lasers are emitting at a precisely defined wavelength within narrow emission bands, chem/bio-sensing applications frequently demand multi-wavelength illumination for addressing a series of species. Instead of using broadband radiation sources, it is a viable strategy to efficiently combine the beams emitted from different lasers to maintain the spectral brightness and yet cover extended wavelength regimes. In this study, substrate-integrated hollow waveguides (iHWGs) are reported as a versatile and efficient alternative compared to conventional beam combining concepts, especially for applications in the mid-infrared spectral regime leading to a highly efficient multi-port beam combiner-the iBEAM.

7.
ACS Sens ; 3(9): 1743-1749, 2018 09 28.
Article En | MEDLINE | ID: mdl-30074387

A multiparameter gas sensor based on distributed feedback interband cascade lasers emitting at 4.35 µm and ultrafast electro-spun luminescence oxygen sensors has been developed for the quantification and continuous monitoring of 13CO2/12CO2 isotopic ratio changes and oxygen in exhaled mouse breath samples. Mid-infrared absorption spectra for quantitatively monitoring the enrichment of 13CO2 levels were recorded in a miniaturized dual-channel substrate-integrated hollow waveguide using balanced ratiometric detection, whereas luminescence quenching was used for synchronously detecting exhaled oxygen levels. Allan variance analysis verified a CO2 measurement precision of 1.6‰ during a 480 s integration time. Routine online monitoring of exhaled mouse breath was performed in 14 mechanically ventilated and instrumented mice and demonstrated the feasibility of online isotope-selective exhaled breath analysis within microliters of probed gas samples using the reported combined sensor platform.


Breath Tests/methods , Carbon Dioxide/analysis , Lasers , Oxygen/analysis , Animals , Breath Tests/instrumentation , Carbon/chemistry , Carbon Dioxide/chemistry , Carbon Isotopes/chemistry , Gas Chromatography-Mass Spectrometry , Mice , Photoacoustic Techniques/methods , Spectrophotometry, Infrared/methods
8.
Environ Sci Technol ; 48(14): 8028-34, 2014 Jul 15.
Article En | MEDLINE | ID: mdl-24945706

Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.


Air Pollutants/analysis , Ethane/analysis , Methane/analysis , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Aircraft , Computer Simulation , Geologic Sediments/chemistry , Texas
9.
Sensors (Basel) ; 14(5): 9027-45, 2014 May 21.
Article En | MEDLINE | ID: mdl-24854363

A compact isotope ratio laser spectrometry (IRLS) instrument was developed for simultaneous measurements of the D/H, 18O/16O and 17O/16O isotope ratios in water by laser absorption spectroscopy at 2.73 µm. Special attention is paid to the spectral data processing and implementation of a Kalman adaptive filtering to improve the measurement precision. Reduction of up to 3-fold in standard deviation in isotope ratio determination was obtained by the use of a Fourier filtering to remove undulation structure from spectrum baseline. Application of Kalman filtering enables isotope ratio measurement at 1 s time intervals with a precision (<1‰) better than that obtained by conventional 30 s averaging, while maintaining a fast system response. The implementation of the filter is described in detail and its effects on the accuracy and the precision of the isotope ratio measurements are investigated.


Oxygen Isotopes/analysis , Spectrum Analysis/methods , Water/analysis , Algorithms , Deuterium/analysis , Equipment Design , Image Processing, Computer-Assisted , Lasers , Spectrum Analysis/instrumentation , Water/chemistry
10.
Appl Opt ; 51(25): 6009-13, 2012 Sep 01.
Article En | MEDLINE | ID: mdl-22945146

We have demonstrated sensing of formaldehyde (H(2)CO) using a room-temperature distributed feedback interband cascade laser (ICL) emitting around 3493 nm. The ICL has been characterized and proved to be very suitable for tunable laser spectroscopy (TLS). The H(2)CO TLS spectra were recorded in direct absorption mode and showed excellent agreement with the Pacific Northwest National Laboratory database. The measurements reported here were taken from a series of measurements of a mixture of H(2)CO in air obtained by vaporizing a solution also containing methanol and formic acid. We obtained a resolution limit better than 1 ppm × m assuming a relative absorption of 10(-3).

11.
Opt Lett ; 37(13): 2502-4, 2012 Jul 01.
Article En | MEDLINE | ID: mdl-22743435

A system for gas sensing based on the quartz-enhanced photoacoustic spectroscopy technique has been developed. It makes use of a quantum well distributed feedback (DFB) laser diode emitting at 3.38 µm. This laser emits near room temperature in the continuous wave regime. A spectrophone, consisting of a quartz tuning fork and two steel microresonators were used. Second derivative wavelength modulation detection is used to perform low concentration measurements. The sensitivity and the linearity of the Quartz enhanced photoacoustic spectroscopy (QEPAS) sensor were studied. A normalized noise equivalent absorption coefficient of 4.06×10(-9) cm(-1)·W/Hz(1/2) was achieved.

12.
Opt Express ; 20(4): 3890-7, 2012 Feb 13.
Article En | MEDLINE | ID: mdl-22418146

We report the fabrication of single mode quantum cascade lasers using a shallow-etched distributed Bragg reflector as frequency selective element. Quasi-continuous single mode tuning over 15 cm-1 at room temperature and 25 cm-1 via temperature tuning at Peltier temperatures is demonstrated. The behavior of both electro-optic and spectral characteristics under variation of the segment currents is analyzed, showing a maximum peak output power at room temperature of 600 mW. Thermal crosstalk between the laser segments is investigated. The spectral resolution of a gas absorption experiment is determined to be better than 0.0078 cm-1.

13.
Opt Lett ; 35(5): 634-6, 2010 Mar 01.
Article En | MEDLINE | ID: mdl-20195302

Kalman adaptive filtering was applied for the first time, to our knowledge, to the real-time simultaneous determination of water isotopic ratios using laser absorption spectroscopy at 2.73 microm. Measurements of the oxygen and hydrogen isotopologue ratios delta(18)O, delta(17)O, and delta(2)H in water showed a 1-sigma precision of 0.72 per thousand for delta(18)O, 0.48 per thousand for delta(17)O, and 0.84 per thousand for delta(2)H, while sampling the output of the tuned Kalman filter at 1 s time intervals. Using a standard running average technique, averaging over approximately 30 s is required to obtain the same level of precision.

14.
Sensors (Basel) ; 10(4): 2492-510, 2010.
Article En | MEDLINE | ID: mdl-22319259

Recent years have shown the importance of tunable semiconductor lasers in optical sensing. We describe the status quo concerning DFB laser diodes between 760 nm and 3,000 nm as well as new developments aiming for up to 80 nm tuning range in this spectral region. Furthermore we report on QCL between 3 µm and 16 µm and present new developments. An overview of the most interesting applications using such devices is given at the end of this paper.

15.
Appl Opt ; 45(20): 4957-65, 2006 Jul 10.
Article En | MEDLINE | ID: mdl-16807605

GaInAsSb/GaAlAsSb/GaSb distributed-feedback (DFB) laser diodes based on a type I active region were fabricated by molecular beam epitaxy at the Centre d'Electronique et de Micro-Optoélectronique de Montpellier (CEM2). The DFB processing was done by Nanoplus Nanosystems and Technologies GmbH. The devices work in the continuous-wave regime above room temperature around an emission wavelength of 2.3 microm with a side-mode suppression ratio greater than 25 dB and as great as 10 mW of output power. The laser devices are fully characterized in terms of optical and electrical properties. Their tuning properties made them adaptable to tunable diode laser absorption spectroscopy because they exhibit more than 220 GHz of continuous tuning by temperature or current. The direct absorption of CH4 is demonstrated to be possible with high spectral selectivity.

16.
Article En | MEDLINE | ID: mdl-16500141

A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 microm atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia.


Gases/analysis , Lasers , Spectrum Analysis/instrumentation , Acoustics , Ammonia , Light , Photometry , Quantum Theory , Spectrum Analysis/methods , Transducers
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 60(14): 3431-6, 2004 Dec.
Article En | MEDLINE | ID: mdl-15561629

First investigations of photoacoustic (PA) spectroscopy (PAS) of methane using an antimonide semiconductor laser are reported. The laser fabrication is made in two steps. The structure is firstly grown by molecular beam epitaxy, then a metallic distributed-feedback (DFB) grating is processed. The laser operates at 2371.6 nm in continuous wave and at room temperature. It demonstrates single-mode emission with typical tuning coefficients of 0.04 nm mA(-1) and 0.2 nm K(-1). PA detection of methane was performed by coupling this laser into a radial PA cell. A detection limit of 20 ppm has been achieved in a preliminary configuration that was not optimised for the laser characteristics.


Antimony , Chemistry Techniques, Analytical/methods , Lasers , Chemistry Techniques, Analytical/instrumentation , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Time Factors
...