Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 231(1): 108-121, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811346

RESUMEN

Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.


Asunto(s)
Embolia , Populus , Carbohidratos , Sequías , Agua , Microtomografía por Rayos X , Xilema
2.
Veg Hist Archaeobot ; 29(4): 407-426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32624646

RESUMEN

The present study aims to reconstruct vegetation development, climate changes and human impact using an ombrotrophic peat core from the Coltrondo bog in the eastern Italian Alps. Evidence from pollen, micro-charcoal, major and trace elements, and lead isotopes from this 7,900 years old peat deposit has been combined, and several climatic oscillations and phases of human impact detected. In particular, human presence was recorded in this area of the Alps from about 650 cal bc, with periods of increased activity at the end of the Middle Ages and also at the end of the 19th century, as evidenced by both human-related pollen and the increase in micro-charcoal particles. The enrichment factor of lead (EFPb) increased since the Roman period and the Middle Ages, suggesting mainly mining activities, whereas the advent of industrialization in the 20th century is marked by the highest EFPb values in the whole core. The EFPb data are strongly supported by the 206Pb/207Pb values and these are in general agreement with the historical information available. Therefore, the multi-proxy approach used here has allowed detection of climatic events and human impact patterns in the Comelico area starting from the Iron Age, giving new insights into the palaeoecology as well as the course of the interaction among humans, climate and ecosystems in this part of the eastern Italian Alps.

3.
PLoS One ; 14(10): e0223752, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31665165

RESUMEN

The Iceman site is unique in the bryology of the Quaternary. Only 21 bryophytes (mosses and liverworts) grow now in the immediate vicinity of the 5,300 year old Iceman discovery site at 3,210m above sea level in the Ötztal Alps, Italy. By contrast 75 or more species including at least ten liverworts were recovered as subfossils frozen in, on and around the Iceman from before, at and after his time. About two thirds of the species grow in the nival zone (above 3,000m above sea level) now while about one third do not. A large part of this third can be explained by the Iceman having both deliberately and inadvertently carried bryophytes during his last, fatal journey. Multivariate analyses (PCA, RDA) provide a variety of explanations for the arrivals of the bryophytes in the rocky hollow where the mummy was discovered. This is well into the nival zone of perennial snow and ice with a very sparse, non-woody flora and very low vegetation cover. Apart from the crucial anthropochory (extra-local plants), both hydrochory (local species) and zoochory (by wild game such as ibex of both local and extra-local species) have been important. Anemochory of mainly local species was of lesser importance and of extra-local species probably of little or no importance. The mosses Neckera complanata and several other ecologically similar species as well as a species of Sphagnum (bogmoss) strongly support the claim that the Iceman, took northwards up Schnalstal, South Tyrol, as the route of the last journey. A different species of bogmoss, taken from his colon is another indication the Iceman's presence at low altitude south of Schnalstal during his last hours when he was first high up, low down and finally at over 3,000m.


Asunto(s)
Briófitas , Fenómenos Ecológicos y Ambientales , Hepatophyta , Hielo , Arqueología , Humanos
4.
Tree Physiol ; 38(2): 212-222, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309674

RESUMEN

In alpine regions, tree hydraulics are limited by low temperatures that restrict xylem growth and induce winter frost drought and freezing stress. While several studies have dealt with functional limitations, data on elevational changes in functionally relevant xylem anatomical parameters are still scarce. In wood cores of Pinus cembra L. and Picea abies (L.) Karst. trunks, harvested along five elevational transects, xylem anatomical parameters (tracheid hydraulic diameter dh, wall reinforcement (t/b)2), pit dimensions (pit aperture Da, pit membrane Dm and torus Dt diameters) and respective functional indices (torus overlap O, margo flexibility) were measured. In both species, tracheid diameters decreased and (t/b)2 increased with increasing elevation, while pit dimensions and functional indices remained rather constant (P. cembra: Dt 10.3 ± 0.2 µm, O 0.477 ± 0.005; P. abies: Dt 9.30 ± 0.18 µm, O 0.492 ± 0.005). However, dh increased with tree height following a power trajectory with an exponent of 0.21, and also pit dimensions increased with tree height (exponents: Dm 0.18; Dt 0.14; Da 0.11). Observed elevational trends in xylem structures were predominantly determined by changes in tree size. Tree height-related changes in anatomical traits showed a remarkable robustness, regardless of the distributional ranges of study species. Despite increasing stress intensities towards the timberline, no adjustment in hydraulic safety at the pit level was observed.


Asunto(s)
Ambiente , Picea/anatomía & histología , Pinus/anatomía & histología , Altitud , Austria , Picea/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Madera/anatomía & histología , Xilema/anatomía & histología , Xilema/crecimiento & desarrollo
5.
Plant Cell Environ ; 39(1): 147-64, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26177592

RESUMEN

Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.


Asunto(s)
Alérgenos/inmunología , Ambrosia/inmunología , Antígenos de Plantas/inmunología , Dióxido de Nitrógeno/farmacología , Extractos Vegetales/inmunología , Contaminación del Aire , Alérgenos/efectos de los fármacos , Alérgenos/genética , Ambrosia/efectos de los fármacos , Ambrosia/genética , Antígenos de Plantas/efectos de los fármacos , Antígenos de Plantas/genética , Cambio Climático , Análisis por Conglomerados , Electroforesis en Gel Bidimensional , Europa (Continente) , Humanos , Extractos Vegetales/genética , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , Estaciones del Año
6.
Front Plant Sci ; 6: 703, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442019

RESUMEN

We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L.) Karst.) occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria). Intra-annual dynamics of stem water deficit (ΔW), maximum daily shrinkage (MDS), and radial growth (RG) were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7) and mature adult trees (25 cm/12.7 m; n = 6) during 2014. ΔW, MDS, and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA). Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm) compared to mature trees (0.54 ± 0.14 mm) is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate-growth relationships, which masked missing temporal or significant correlations when the entire study period (April-October) was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests.

7.
Int J Biometeorol ; 59(4): 417-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24871430

RESUMEN

We monitored dynamics of stem water deficit (ΔW) and needle water potential (Ψ) during two consecutive growing seasons (2011 and 2012) in a dry inner Alpine environment (750 m above sea level, Tyrol, Austria), where Pinus sylvestris, Picea abies and Larix decidua form mixed stands. ΔW was extracted from stem circumference variations, which were continuously recorded by electronic band dendrometers (six trees per species) and correlations with environmental variables were performed. Results revealed that (i) ΔW reached highest and lowest values in P. abies and L. decidua, respectively, while mean minimum water potential (Ψ(ea)) amounted to -3.0 MPa in L. decidua and -1.8 MPa in P. abies and P. sylvestris. (ii) ΔW and Ψ(ea) were significantly correlated in P. abies (r = 0.630; P = 0.038) and L. decidua (r = 0.646; P = 0.032). (iii) In all species, ΔW reached highest values in late summer and was most closely related to temperature (P < 0.001). Results indicate that all species were undergoing water limitations as measured by increasing ΔW throughout the growing season, whereby P. abies most strongly drew upon water reserves in the living tissues of the bark. Quite similar ΔW developed in drought-sensitive L. decidua and drought-tolerant P. sylvestris indicate that various water storage locations are depleted in species showing different strategies of water status regulation, i.e. anisohydric vs. isohydric behavior, respectively, and/or water uptake efficiency differs among these species. Close coupling of ΔW to temperature suggests that climate warming affects plant water status through its effect on atmospheric demand for moisture.


Asunto(s)
Tallos de la Planta/metabolismo , Estaciones del Año , Suelo/química , Tracheophyta/clasificación , Tracheophyta/metabolismo , Agua/metabolismo , Austria , Sequías , Ambiente , Exposición a Riesgos Ambientales/análisis , Tallos de la Planta/crecimiento & desarrollo , Especificidad de la Especie , Tracheophyta/crecimiento & desarrollo
8.
Eur J For Res ; 133(3): 467-479, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24883053

RESUMEN

Dendroclimatological studies in a dry inner Alpine environment (750 m a.s.l.) revealed different growth response of co-occurring coniferous species to climate, which is assumed to be caused by a temporal shift in wood formation among species. The main focus of this study therefore was to monitor intra-annual dynamics of radial increment growth of mature deciduous and evergreen coniferous species (Pinus sylvestris, Larix decidua and Picea abies) during two consecutive years with contrasting climatic conditions. Radial stem growth was continuously followed by band dendrometers and modelled using Gompertz functions to determine time of maximum growth. Histological analyses of tree ring formation allowed determination of temporal dynamics of cambial activity and xylem cell development. Daily fluctuations in stem radius and radial stem increments were extracted from dendrometer traces, and correlations with environmental variables were performed. While a shift in temporal dynamics of radial growth onset and cessation was detected among co-occurring species, intra-annual radial growth peaked synchronously in late May 2011 and early June 2012. Moist atmospheric conditions, i.e. high relative air humidity, low vapour pressure deficit and low air temperature during the main growing period, favoured radial stem increment of all species. Soil water content and soil temperature were not significantly related to radial growth. Although a temporal shift in onset and cessation of wood formation was detected among species, synchronous culmination of radial growth indicates homogenous exogenous and/or endogenous control. The close coupling of radial growth to atmospheric conditions points to the importance of stem water status for intra-annual growth of drought-prone conifers.

9.
Tree Physiol ; 31(5): 483-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21593011

RESUMEN

We determined the influence of environmental factors (air and soil temperature, precipitation, photoperiod) on onset of xylem growth in Scots pine (Pinus sylvestris L.) within a dry inner Alpine valley (750 m a.s.l., Tyrol, Austria) by repeatedly sampling micro-cores throughout 2007-10 at two sites (xeric and dry-mesic) at the start of the growing season. Temperature sums were calculated in degree-days (DD) ≥5 °C from 1 January and 20 March, i.e., spring equinox, to account for photoperiodic control of release from winter dormancy. Threshold temperatures at which xylogenesis had a 0.5 probability of being active were calculated by logistic regression. Onset of xylem growth, which was not significantly different between the xeric and dry-mesic sites, ranged from mid-April in 2007 to early May in 2008. Among most study years, statistically significant differences (P<0.05) in onset of xylem growth were detected. Mean air temperature sums calculated from 1 January until onset of xylem growth were 230 ± 44 DD (mean ± standard deviation) at the xeric site and 205 ± 36 DD at the dry-mesic site. Temperature sums calculated from spring equinox until onset of xylem growth showed somewhat less variability during the 4-year study period, amounting to 144 ± 10 and 137 ± 12 DD at the xeric and dry-mesic sites, respectively. At both sites, xylem growth was active when daily minimum, mean and maximum air temperatures were 5.3, 10.1 and 16.2 °C, respectively. Soil temperature thresholds and DD until onset of xylem growth differed significantly between sites, indicating minor importance of root-zone temperature for onset of xylem growth. Although spring precipitation is known to limit radial growth in P. sylvestris exposed to a dry inner Alpine climate, the results of this study revealed that (i) a daily minimum air temperature threshold for onset of xylem growth in the range 5-6 °C exists and (ii) air temperature sum rather than precipitation or soil temperature triggers start of xylem growth. Based on these findings, we suggest that drought stress forces P. sylvestris to draw upon water reserves in the stem for enlargement of first tracheids after cambial resumption in spring.


Asunto(s)
Sequías , Pinus sylvestris/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Austria , Modelos Logísticos , Fotoperiodo , Tallos de la Planta/crecimiento & desarrollo , Lluvia , Estaciones del Año , Temperatura , Madera/crecimiento & desarrollo
10.
Trees (Berl West) ; 22(1): 31-40, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21532976

RESUMEN

Although growth limitation of trees at Alpine and high-latitude timberlines by prevailing summer temperature is well established, loss of thermal response of radial tree growth during last decades has repeatedly been addressed. We examined long-term variability of climate-growth relationships in ring width chronologies of Stone pine (Pinus cembra L.) by means of moving response functions (MRF). The study area is situated in the timberline ecotone (c. 2000 - 2200 m a.s.l.) on Mt. Patscherkofel (Tyrol, Austria). Five site chronologies were developed within the ecotone with constant sample depth (≥ 19 trees) throughout most of the time period analysed. MRF calculated for the period 1866-1999 and 1901-1999 for c. 200 and c. 100 yr old stands, respectively, revealed that mean July temperature is the major and long-term stable driving force of Pinus cembra radial growth within the timberline ecotone. However, since the mid 1980s, radial growth in timberline and tree line chronologies strikingly diverges from the July temperature trend. This is probably a result of extreme climate events (e.g. low winter precipitation, late frost) and/or increasing drought stress on cambial activity. The latter assumption is supported by a < 10 % increase in annual increments of c. 50 yr old trees at the timberline and at the tree line in 2003 compared to 2002, when extraordinary hot and dry conditions prevailed during summer. Furthermore, especially during the second half of the 20(th) century, influence of climate variables on radial growth show abrupt fluctuations, which might also be a consequence of climate warming on tree physiology.

11.
New Phytol ; 169(2): 299-308, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16411933

RESUMEN

Along the Alpine river Lech (Tyrol, Austria), poorly grown Scots pine (Pinus sylvestris) stands dominate on dry alluvial terraces, which are made up of coarse calcareous gravel. Here we evaluated the impact of environmental factors, such as precipitation, temperature and water table, on annual variability of radial growth. Tree-ring chronologies from six stands comprising different age classes were developed by extracting two core samples from more than 15 trees per plot. Pearson correlations were applied to determine the influence of environmental factors. Close inverse correlations (r2 > 0.35) between maximum water table during the growing period and annual increments of adult stands indicated that water surplus in the rooting zone was the primary growth-limiting factor. Drought stress reduced growth only in some extremely dry years. Results provide evidence that dominance of P. sylvestris on gravelly alluvial terraces is caused not only by tolerance of soil dryness and nutrient deficiency, as previously assumed, but also by a dynamic multilayered root system which allows adaptation to highly variable soil-moisture conditions.


Asunto(s)
Ecosistema , Pinus sylvestris/crecimiento & desarrollo , Suelo/análisis , Agua/metabolismo , Pinus sylvestris/metabolismo , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...