Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38805398

RESUMEN

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Asunto(s)
Células Madre Pluripotentes Inducidas , Xerodermia Pigmentosa , Xerodermia Pigmentosa/patología , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/genética , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Estrés del Retículo Endoplásmico , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular , Daño del ADN , Modelos Biológicos , Multiómica
2.
Nat Genet ; 56(1): 23-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036782

RESUMEN

The chemotherapeutic agent CX-5461, or pidnarulex, has been fast-tracked by the United States Food and Drug Administration for early-stage clinical studies of BRCA1-, BRCA2- and PALB2-mutated cancers. It is under investigation in phase I and II trials. Here, we find that, although CX-5461 exhibits synthetic lethality in BRCA1-/BRCA2-deficient cells, it also causes extensive, nonselective, collateral mutagenesis in all three cell lines tested, to magnitudes that exceed known environmental carcinogens.


Asunto(s)
Mutágenos , Neoplasias , Humanos , Mutágenos/toxicidad , Proteína BRCA1/genética , Proteína BRCA2/genética , Benzotiazoles/uso terapéutico , Naftiridinas , Neoplasias/tratamiento farmacológico
3.
Science ; 376(6591)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35949260

RESUMEN

Whole-genome sequencing (WGS) permits comprehensive cancer genome analyses, revealing mutational signatures, imprints of DNA damage and repair processes that have arisen in each patient's cancer. We performed mutational signature analyses on 12,222 WGS tumor-normal matched pairs, from patients recruited via the UK National Health Service. We contrasted our results to two independent cancer WGS datasets, the International Cancer Genome Consortium (ICGC) and Hartwig Foundation, involving 18,640 WGS cancers in total. Our analyses add 40 single and 18 double substitution signatures to the current mutational signature tally. Critically, we show for each organ, that cancers have a limited number of 'common' signatures and a long tail of 'rare' signatures. We provide a practical solution for utilizing this concept of common versus rare signatures in future analyses.


Asunto(s)
Neoplasias , Secuencia de Bases , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Humanos , Mutación , Neoplasias/genética , Población/genética , Reino Unido
4.
Nat Genet ; 54(9): 1406-1416, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35953586

RESUMEN

We explored human induced pluripotent stem cells (hiPSCs) derived from different tissues to gain insights into genomic integrity at single-nucleotide resolution. We used genome sequencing data from two large hiPSC repositories involving 696 hiPSCs and daughter subclones. We find ultraviolet light (UV)-related damage in ~72% of skin fibroblast-derived hiPSCs (F-hiPSCs), occasionally resulting in substantial mutagenesis (up to 15 mutations per megabase). We demonstrate remarkable genomic heterogeneity between independent F-hiPSC clones derived during the same round of reprogramming due to oligoclonal fibroblast populations. In contrast, blood-derived hiPSCs (B-hiPSCs) had fewer mutations and no UV damage but a high prevalence of acquired BCOR mutations (26.9% of lines). We reveal strong selection pressure for BCOR mutations in F-hiPSCs and B-hiPSCs and provide evidence that they arise in vitro. Directed differentiation of hiPSCs and RNA sequencing showed that BCOR mutations have functional consequences. Our work strongly suggests that detailed nucleotide-resolution characterization is essential before using hiPSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular/genética , Genómica , Humanos , Mutación , Nucleótidos , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética
5.
Microbiol Spectr ; 10(2): e0240021, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35234500

RESUMEN

Lactic acid bacteria (LAB) play a significant role in biotechnology, e.g., food industry and also in human health. Many LAB genera have developed a multidrug resistance in the past few years, causing a serious problem in controlling hospital germs worldwide. Enterococcus faecalis accounts for a large part of the human infections caused by LABs. Therefore, studying its adaptive metabolism under various environmental conditions is particularly important to promote the development of new therapeutic approaches. In this study, we investigated the effect of glutamine auxotrophy (ΔglnA mutant) on metabolic and proteomic adaptations of E. faecalis in response to a changing pH in its environment. Changing pH values are part of the organism's natural environment in the human body and play a role in the food industry. We compared the results with those of the wildtype. Using a genome-scale metabolic model constrained by metabolic and proteomic data, our integrative method allows us to understand the bigger picture of the adaptation strategies of this bacterium. The study showed that energy demand is the decisive factor in adapting to a new environmental pH. The energy demand of the mutant was higher at all conditions. It has been reported that ΔglnA mutants of bacteria are energetically less effective. With the aid of our data and model we are able to explain this phenomenon as a consequence of a failure to regulate glutamine uptake and the costs for the import of glutamine and the export of ammonium. Methodologically, it became apparent that taking into account the nonspecificity of amino acid transporters is important for reproducing metabolic changes with genome-scale models because it affects energy balance. IMPORTANCE The integration of new pH-dependent experimental data on metabolic uptake and release fluxes, as well as of proteome data with a genome-scale computational model of a glutamine synthetase mutant of E. faecalis is used and compared with those of the wildtype to understand why glutamine auxotrophy results in a less efficient metabolism and how-in comparison with the wildtype-the glutamine synthetase knockout impacts metabolic adjustments during acidification or simply exposure to lower pH. We show that forced glutamine auxotrophy causes more energy demand and that this is likely due to a disregulated glutamine uptake. Proteome changes during acidification observed for the mutant resemble those of the wildtype with the exception of glycolysis-related genes, as the mutant is already energetically stressed at a higher pH and the respective proteome changes were in effect.


Asunto(s)
Enterococcus faecalis , Glutamato-Amoníaco Ligasa , Enterococcus faecalis/genética , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/metabolismo , Glutamina/farmacología , Humanos , Proteoma/metabolismo , Proteoma/farmacología , Proteómica
6.
Mol Cell Biol ; 41(9): e0030321, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34228493

RESUMEN

Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.


Asunto(s)
Proteínas Aviares/metabolismo , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Enzimas Multifuncionales/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Pollos , Endodesoxirribonucleasas/química , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Guanosina/análogos & derivados , Células HEK293 , Humanos , Metilnitronitrosoguanidina , Enzimas Multifuncionales/química , Mutación/genética , Tionucleósidos
7.
Nat Rev Cancer ; 21(10): 619-637, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34316057

RESUMEN

Whole-genome sequencing has brought the cancer genomics community into new territory. Thanks to the sheer power provided by the thousands of mutations present in each patient's cancer, we have been able to discern generic patterns of mutations, termed 'mutational signatures', that arise during tumorigenesis. These mutational signatures provide new insights into the causes of individual cancers, revealing both endogenous and exogenous factors that have influenced cancer development. This Review brings readers up to date in a field that is expanding in computational, experimental and clinical directions. We focus on recent conceptual advances, underscoring some of the caveats associated with using the mutational signature frameworks and highlighting the latest experimental insights. We conclude by bringing attention to areas that are likely to see advancements in clinical applications.


Asunto(s)
Análisis Mutacional de ADN , Genómica , Mutación , Neoplasias/genética , Carcinogénesis/genética , Humanos , Neoplasias/terapia
8.
Nat Cancer ; 2(6): 643-657, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34164627

RESUMEN

Mutational signatures are imprints of pathophysiological processes arising through tumorigenesis. We generated isogenic CRISPR-Cas9 knockouts (Δ) of 43 genes in human induced pluripotent stem cells, cultured them in the absence of added DNA damage, and performed whole-genome sequencing of 173 subclones. ΔOGG1, ΔUNG, ΔEXO1, ΔRNF168, ΔMLH1, ΔMSH2, ΔMSH6, ΔPMS1, and ΔPMS2 produced marked mutational signatures indicative of being critical mitigators of endogenous DNA modifications. Detailed analyses revealed mutational mechanistic insights, including how 8-oxo-dG elimination is sequence-context-specific while uracil clearance is sequence-context-independent. Mismatch repair (MMR) deficiency signatures are engendered by oxidative damage (C>A transversions), differential misincorporation by replicative polymerases (T>C and C>T transitions), and we propose a 'reverse template slippage' model for T>A transversions. ΔMLH1, ΔMSH6, and ΔMSH2 signatures were similar to each other but distinct from ΔPMS2. Finally, we developed a classifier, MMRDetect, where application to 7,695 WGS cancers showed enhanced detection of MMR-deficient tumors, with implications for responsiveness to immunotherapies.


Asunto(s)
Neoplasias Colorrectales , Células Madre Pluripotentes Inducidas , Neoplasias Encefálicas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias Colorrectales/genética , Daño del ADN/genética , Humanos , Mutación , Síndromes Neoplásicos Hereditarios
9.
Nat Commun ; 11(1): 1980, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332764

RESUMEN

The mechanisms that underpin how insertions or deletions (indels) become fixed in DNA have primarily been ascribed to replication-related and/or double-strand break (DSB)-related processes. Here, we introduce a method to evaluate indels, orientating them relative to gene transcription. In so doing, we reveal a number of surprising findings: First, there is a transcriptional strand asymmetry in the distribution of mononucleotide repeat tracts in the reference human genome. Second, there is a strong transcriptional strand asymmetry of indels across 2,575 whole genome sequenced human cancers. We suggest that this is due to the activity of transcription-coupled nucleotide excision repair (TC-NER). Furthermore, TC-NER interacts with mismatch repair (MMR) under physiological conditions to produce strand bias. Finally, we show how insertions and deletions differ in their dependencies on these repair pathways. Our analytical approach reveals insights into the contribution of DNA repair towards indel mutagenesis in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Neoplasias/genética , Secuencias Repetitivas de Ácidos Nucleicos , Secuencias de Aminoácidos , Biología Computacional , Análisis Mutacional de ADN , Replicación del ADN , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Variación Genética , Genoma Humano , Genómica , Humanos , Mutación INDEL , Mutagénesis , Neoplasias/metabolismo , Polinucleótidos/genética , Análisis de Secuencia de ARN , Transcripción Genética
10.
Nat Cancer ; 1(2): 249-263, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32118208

RESUMEN

Mutational signatures are patterns of mutations that arise during tumorigenesis. We present an enhanced, practical framework for mutational signature analyses. Applying these methods on 3,107 whole genome sequenced (WGS) primary cancers of 21 organs reveals known signatures and nine previously undescribed rearrangement signatures. We highlight inter-organ variability of signatures and present a way of visualizing that diversity, reinforcing our findings in an independent analysis of 3,096 WGS metastatic cancers. Signatures with a high level of genomic instability are dependent on TP53 dysregulation. We illustrate how uncertainty in mutational signature identification and assignment to samples affects tumor classification, reinforcing that using multiple orthogonal mutational signature data is not only beneficial, it is essential for accurate tumor stratification. Finally, we present a reference web-based tool for cancer and experimentally-generated mutational signatures, called Signal (https://signal.mutationalsignatures.com), that also supports performing mutational signature analyses.


Asunto(s)
Neoplasias , Carcinogénesis , Humanos , Mutación/genética , Neoplasias/genética
11.
Genome Biol ; 21(1): 37, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32059681

RESUMEN

Mutational signatures provide a powerful alternative for understanding the pathophysiology of cancer. Currently, experimental efforts aimed at validating and understanding the etiologies of cancer-derived mutational signatures are underway. In this review, we highlight key aspects of mutational signature experimental design and describe the analytical framework. We suggest guidelines and quality control measures for handling whole-genome sequencing data for mutational signature analyses and discuss pitfalls in interpretation. We envision that improved next-generation sequencing technologies and molecular cell biology approaches will usher in the next generation of studies into the etiologies and mechanisms of mutational patterns uncovered in cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Pruebas Genéticas/métodos , Tasa de Mutación , Neoplasias/genética , Secuenciación Completa del Genoma/métodos , Animales , Pruebas Genéticas/normas , Humanos , Guías de Práctica Clínica como Asunto , Secuenciación Completa del Genoma/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA