Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Klin Padiatr ; 2024 Mar 08.
Artículo en Alemán | MEDLINE | ID: mdl-38458232

RESUMEN

The combination of vancomycin and piperacillin/tazobactam (V+P/T) is used for empirical antibiotic treatment of severe infections, especially in immunocompromised patients and those colonized with multidrug-resistant bacteria. Nephrotoxicity is a frequently observed adverse effect of vancomycin. Its risk can be reduced by therapeutic drug monitoring and adjusted dosing. Piperacillin/tazobactam (P/T) rarely causes interstitial nephritis. The results of retrospective cohort studies in children predominantly show a low, clinically irrelevant, additive nephrotoxicity (defined as an increase in creatinine in the serum) of both substances. Due to the limitations of the existing publications, the ABS working group of the DGPI and experts of the GPN do not recommend against the use of P/T plus vancomycin. Preclinical studies and a prospective study with adult patients, which evaluated different renal function tests as well as clinical outcomes, do not support previous findings of additive nephrotoxicity. Time-restricted use of V+P/T can minimize exposure and the potential risk of nephrotoxicity. Local guidelines, developed in collaboration with the antibiotic stewardship team, should define the indications for empirical and targeted use of P/T and V+P/T. When using combination therapy with V+P/T, kidney function should be monitored through clinical parameters (volume status, balancing, blood pressure) as well as additional laboratory tests such as serum creatinine and cystatin C.

2.
Genome Med ; 15(1): 62, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612755

RESUMEN

BACKGROUND: Long-read sequencing is increasingly used to uncover structural variants in the human genome, both functionally neutral and deleterious. Structural variants occur more frequently in regions with a high homology or repetitive segments, and one rearrangement may predispose to additional events. Bartter syndrome type 3 (BS 3) is a monogenic tubulopathy caused by deleterious variants in the chloride channel gene CLCNKB, a high proportion of these being large gene deletions. Multiplex ligation-dependent probe amplification, the current diagnostic gold standard for this type of mutation, will indicate a simple homozygous gene deletion in biallelic deletion carriers. However, since the phenotypic spectrum of BS 3 is broad even among biallelic deletion carriers, we undertook a more detailed analysis of precise breakpoint regions and genomic structure. METHODS: Structural variants in 32 BS 3 patients from 29 families and one BS4b patient with CLCNKB deletions were investigated using long-read and synthetic long-read sequencing, as well as targeted long-read sequencing approaches. RESULTS: We report a ~3 kb duplication of 3'-UTR CLCNKB material transposed to the corresponding locus of the neighbouring CLCNKA gene, also found on ~50 % of alleles in healthy control individuals. This previously unknown common haplotype is significantly enriched in our cohort of patients with CLCNKB deletions (45 of 51 alleles with haplotype information, 2.2 kb and 3.0 kb transposition taken together, p=9.16×10-9). Breakpoint coordinates for the CLCNKB deletion were identifiable in 28 patients, with three being compound heterozygous. In total, eight different alleles were found, one of them a complex rearrangement with three breakpoint regions. Two patients had different CLCNKA/CLCNKB hybrid genes encoding a predicted CLCNKA/CLCNKB hybrid protein with likely residual function. CONCLUSIONS: The presence of multiple different deletion alleles in our cohort suggests that large CLCNKB gene deletions originated from many independently recurring genomic events clustered in a few hot spots. The uncovered associated sequence transposition haplotype apparently predisposes to these additional events. The spectrum of CLCNKB deletion alleles is broader than expected and likely still incomplete, but represents an obvious candidate for future genotype/phenotype association studies. We suggest a sensitive and cost-efficient approach, consisting of indirect sequence capture and long-read sequencing, to analyse disease-relevant structural variant hotspots in general.


Asunto(s)
Síndrome de Bartter , Humanos , Haplotipos , Alelos , Genoma Humano , Canales de Cloruro/genética
3.
Proc Natl Acad Sci U S A ; 120(22): e2211087120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216524

RESUMEN

Mutations in genes encoding molecular chaperones can lead to chaperonopathies, but none have so far been identified causing congenital disorders of glycosylation. Here we identified two maternal half-brothers with a novel chaperonopathy, causing impaired protein O-glycosylation. The patients have a decreased activity of T-synthase (C1GALT1), an enzyme that exclusively synthesizes the T-antigen, a ubiquitous O-glycan core structure and precursor for all extended O-glycans. The T-synthase function is dependent on its specific molecular chaperone Cosmc, which is encoded by X-chromosomal C1GALT1C1. Both patients carry the hemizygous variant c.59C>A (p.Ala20Asp; A20D-Cosmc) in C1GALT1C1. They exhibit developmental delay, immunodeficiency, short stature, thrombocytopenia, and acute kidney injury (AKI) resembling atypical hemolytic uremic syndrome. Their heterozygous mother and maternal grandmother show an attenuated phenotype with skewed X-inactivation in blood. AKI in the male patients proved fully responsive to treatment with the complement inhibitor Eculizumab. This germline variant occurs within the transmembrane domain of Cosmc, resulting in dramatically reduced expression of the Cosmc protein. Although A20D-Cosmc is functional, its decreased expression, though in a cell or tissue-specific manner, causes a large reduction of T-synthase protein and activity, which accordingly leads to expression of varied amounts of pathological Tn-antigen (GalNAcα1-O-Ser/Thr/Tyr) on multiple glycoproteins. Transient transfection of patient lymphoblastoid cells with wild-type C1GALT1C1 partially rescued the T-synthase and glycosylation defect. Interestingly, all four affected individuals have high levels of galactose-deficient IgA1 in sera. These results demonstrate that the A20D-Cosmc mutation defines a novel O-glycan chaperonopathy and causes the altered O-glycosylation status in these patients.


Asunto(s)
Lesión Renal Aguda , Chaperonas Moleculares , Masculino , Humanos , Chaperonas Moleculares/metabolismo , Mutación , Polisacáridos/metabolismo , Células Germinativas/metabolismo
4.
Kidney360 ; 4(3): 291-293, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36996292
5.
Nephrol Dial Transplant ; 37(12): 2351-2362, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-35772019

RESUMEN

Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.


Asunto(s)
Enfermedades Renales , Insuficiencia Renal , Anomalías Urogenitales , Niño , Humanos , Riñón/patología , Enfermedades Renales/patología , Insuficiencia Renal/patología
6.
Vet Rec ; 190(5): e1077, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34750822

RESUMEN

BACKGROUND: Investigation of the MRI characteristics of the palatine tonsil in brachycephalic dogs in 3T high-field system. METHODS: Eighty-five brachycephalic dogs and 37 normocephalic dogs were divided into five groups: group 1 French bulldogs (FBs) with neurological clinical signs (n = 37), group 2 FBs with brachycephalic obstructive airway syndrome (BOAS) (n = 22), group 3 pugs with neurological clinical signs (n = 17), group 4 pugs with BOAS (n = 9) and group 5 normocephalic dogs (n = 37). Cross-sectional area and volume measurements were performed, and tonsillar margination and contour, shape, signal intensity and homogeneity/heterogeneity of the palatine tonsils were evaluated and compared. RESULTS: Cross-sectional area and volume measurements of the tonsils showed no significant differences between brachycephalic and normocephalic dogs with the exception of the dogs of group 2 (FB BOAS), which showed relatively high volume and large cross-sectional area in comparison to other groups. In 87% of the brachycephalic animals, the tonsils were well defined. A smooth contour was detectable in 91.8% and a rounded shape in 94.7% of brachycephalic dogs. Signal intensity was assessed as hyperintense in relation to the musculature and iso- to hyperintense to the soft palate. Heterogeneous appearance was described in 86.9% of the brachycephalic animals. CONCLUSIONS: The MRI characteristics of the tonsils of brachycephalic dogs do not differ considerably from those of normocephalic dogs. In FBs with distinct clinical signs of obstructive airway syndrome, increase in cross-sectional area and volume of the tonsils was detected.


Asunto(s)
Obstrucción de las Vías Aéreas , Craneosinostosis , Enfermedades de los Perros , Obstrucción de las Vías Aéreas/diagnóstico por imagen , Obstrucción de las Vías Aéreas/veterinaria , Animales , Craneosinostosis/veterinaria , Enfermedades de los Perros/diagnóstico por imagen , Perros , Imagen por Resonancia Magnética/veterinaria , Tonsila Palatina/diagnóstico por imagen
7.
Vet Radiol Ultrasound ; 63(3): e20-e23, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34713527

RESUMEN

A 10-month-old male Saarloos Wolfdog was presented with a history of multiple neurologic deficits that had acutely progressed. Neurologic examination findings localized signs to the cerebrum and brainstem. Magnetic resonance imaging revealed markedly enlarged and gas-filled lateral ventricles with a mass effect leading to cerebellar herniation. A right-sided defect of the cribriform plate with a dysplastic ethmoturbinate was identified as the inlet of air and origin of the intraventricular tension pneumocephalus. Surgical findings were consistent with a ruptured, congenital, nasal meningocele.


Asunto(s)
Neumocéfalo , Animales , Encefalocele/veterinaria , Ventrículos Laterales/patología , Imagen por Resonancia Magnética/veterinaria , Masculino , Neumocéfalo/diagnóstico por imagen , Neumocéfalo/patología , Neumocéfalo/veterinaria
8.
Kidney Int Rep ; 6(5): 1368-1378, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34013115

RESUMEN

INTRODUCTION: Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. METHODS: We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. RESULTS: Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. CONCLUSION: A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.

9.
Mol Cell Pediatr ; 8(1): 2, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33625646

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in 0.5-1/100 newborns and as a group they represent the most frequent cause for chronic kidney failure in children. CAKUT comprise clinically heterogeneous conditions, ranging from mild vesicoureteral reflux to kidney aplasia. Most forms of CAKUT share the pathophysiology of an impaired developmental interaction of the ureteric bud (UB) and the metanephric mesenchyme (MM). In most cases, CAKUT present as an isolated condition. They also may occur as a component in rare multi-organ syndromes. Many CAKUT probably have a multifactorial etiology. However, up to 20% of human patients and > 200 transgenic mouse models have a monogenic form of CAKUT, which has fueled our efforts to unravel molecular kidney (mal-)development. To date, genetic variants in more than 50 genes have been associated with (isolated) CAKUT in humans. In this short review, we will summarize typical imaging findings in patients with CAKUT and highlight recent mechanistic insight in the molecular pathogenesis of monogenic forms of CAKUT.

10.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32891193

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Asunto(s)
Proteínas de Unión al ADN/genética , Epigénesis Genética , Factores de Transcripción Forkhead/genética , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Sistema Urinario/metabolismo , Anomalías Urogenitales/genética , Proteínas Anfibias/antagonistas & inhibidores , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo , Animales , Estudios de Casos y Controles , Niño , Preescolar , Proteínas de Unión al ADN/metabolismo , Familia , Femenino , Factores de Transcripción Forkhead/metabolismo , Heterocigoto , Humanos , Lactante , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Ratones , Ratones Noqueados , Morfolinos/genética , Morfolinos/metabolismo , Linaje , Unión Proteica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sistema Urinario/anomalías , Anomalías Urogenitales/metabolismo , Anomalías Urogenitales/patología , Secuenciación del Exoma , Xenopus
11.
Hum Genet ; 138(10): 1105-1115, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31230195

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney disease (~ 45%) that manifests before 30 years of age. The genetic locus containing COL4A1 (13q33-34) has been implicated in vesicoureteral reflux (VUR), but mutations in COL4A1 have not been reported in CAKUT. We hypothesized that COL4A1 mutations cause CAKUT in humans. We performed whole exome sequencing (WES) in 550 families with CAKUT. As negative control cohorts we used WES sequencing data from patients with nephronophthisis (NPHP) with no genetic cause identified (n = 257) and with nephrotic syndrome (NS) due to monogenic causes (n = 100). We identified a not previously reported heterozygous missense variant in COL4A1 in three siblings with isolated VUR. When examining 549 families with CAKUT, we identified nine additional different heterozygous missense mutations in COL4A1 in 11 individuals from 11 unrelated families with CAKUT, while no COL4A1 mutations were identified in a control cohort with NPHP and only one in the cohort with NS. Most individuals (12/14) had isolated CAKUT with no extrarenal features. The predominant phenotype was VUR (9/14). There were no clinical features of the COL4A1-related disorders (e.g., HANAC syndrome, porencephaly, tortuosity of retinal arteries). Whereas COL4A1-related disorders are typically caused by glycine substitutions in the collagenous domain (84.4% of variants), only one variant in our cohort is a glycine substitution within the collagenous domain (1/10). We identified heterozygous COL4A1 mutations as a potential novel autosomal dominant cause of CAKUT that is allelic to the established COL4A1-related disorders and predominantly caused by non-glycine substitutions.


Asunto(s)
Colágeno Tipo IV/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Riñón/anomalías , Mutación , Fenotipo , Sistema Urinario/anomalías , Alelos , Sustitución de Aminoácidos , Biología Computacional/métodos , Análisis Mutacional de ADN , Bases de Datos Genéticas , Evolución Molecular , Femenino , Estudios de Asociación Genética , Sitios Genéticos , Genómica/métodos , Heterocigoto , Humanos , Enfermedades Renales Quísticas/diagnóstico , Enfermedades Renales Quísticas/genética , Masculino , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/genética , Navegador Web , Secuenciación del Exoma
12.
PLoS One ; 13(1): e0191224, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351342

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.


Asunto(s)
Biomarcadores de Tumor/genética , Síndrome de Fraser/genética , Mutación Missense , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Recién Nacidos , Biomarcadores de Tumor/química , Proteínas de Unión al Calcio , Niño , Consanguinidad , Secuencia Conservada , Exones , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Humanos , Masculino , Ratones , Modelos Animales , Modelos Moleculares , Linaje , Homología de Secuencia de Aminoácido , Sistema Urogenital/crecimiento & desarrollo , Sistema Urogenital/metabolismo
13.
Clin J Am Soc Nephrol ; 13(1): 53-62, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-29127259

RESUMEN

BACKGROUND AND OBJECTIVES: Steroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Three hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes. RESULTS: In 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome. CONCLUSIONS: Whole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


Asunto(s)
Análisis Mutacional de ADN/métodos , Secuenciación del Exoma , Marcadores Genéticos , Mutación , Síndrome Nefrótico/congénito , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Tasa de Mutación , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/genética , Síndrome Nefrótico/terapia , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Adulto Joven
14.
J Am Soc Nephrol ; 28(1): 69-75, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27151922

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the leading cause of CKD in children, featuring a broad variety of malformations. A monogenic cause can be detected in around 12% of patients. However, the morphologic clinical phenotype of CAKUT frequently does not indicate specific genes to be examined. To determine the likelihood of detecting causative recessive mutations by whole-exome sequencing (WES), we analyzed individuals with CAKUT from 33 different consanguineous families. Using homozygosity mapping and WES, we identified the causative mutations in nine of the 33 families studied (27%). We detected recessive mutations in nine known disease-causing genes: ZBTB24, WFS1, HPSE2, ATRX, ASPH, AGXT, AQP2, CTNS, and PKHD1 Notably, when mutated, these genes cause multiorgan syndromes that may include CAKUT as a feature (syndromic CAKUT) or cause renal diseases that may manifest as phenocopies of CAKUT. None of the above monogenic disease-causing genes were suspected on clinical grounds before this study. Follow-up clinical characterization of those patients allowed us to revise and detect relevant new clinical features in a more appropriate pathogenetic context. Thus, applying WES to the diagnostic approach in CAKUT provides opportunities for an accurate and early etiology-based diagnosis and improved clinical management.


Asunto(s)
Exoma/genética , Mutación , Anomalías Urogenitales/genética , Reflujo Vesicoureteral/genética , Humanos , Fenotipo , Síndrome
15.
Nephrol Dial Transplant ; 31(8): 1280-3, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26908769

RESUMEN

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of chronic kidney diseases in children and young adults, accounting for ∼50% of cases. These anomalies represent maldevelopment of the genitourinary system and can be genetically explained in only 10-16% of cases by mutations or by copy number variations in protein coding sequences. Knock-out mouse models, lacking components of the microRNA (miRNA) processing machinery (i.e. Dicer, Drosha, Dgcr8), exhibit kidney malformations resembling human CAKUT. METHODS: Given the Dicer-null mouse phenotype, which implicates a central role for miRNAs gene regulation during kidney development, we hypothesized that miRNAs expressed during kidney development may cause CAKUT in humans if mutated. To evaluate this possibility we carried out Next-Generation sequencing of 96 stem-loop regions of 73 renal developmental miRNA genes in 1248 individuals with non-syndromic CAKUT from 980 families. RESULTS: We sequenced 96 stem-loop regions encoded by 73 miRNA genes that are expressed during kidney development in humans, mice and rats. Overall, we identified in 31/1213 individuals from 26 families with 17 different single nucleotide variants. Two variants did not segregate with the disease and hence were not causative. Thirteen variants were likely benign variants because they occurred in control populations and/or they affected nucleotides of weak evolutionary conservation. Two out of 1213 unrelated individuals had potentially pathogenic variants with unknown biologic relevance affecting miRNAs MIR19B1 and MIR99A. CONCLUSIONS: Our results indicate that mutations affecting mature microRNAs in individuals with CAKUT are rare and thus most likely not a common cause of CAKUT in humans.


Asunto(s)
Riñón/anomalías , MicroARNs/genética , Mutación , Sistema Urinario/anomalías , Anomalías Urogenitales/genética , Adolescente , Animales , Niño , Variaciones en el Número de Copia de ADN , Humanos , Ratones , Ratones Noqueados , Fenotipo , Ratas , Adulto Joven
16.
Nat Genet ; 48(4): 457-65, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26878725

RESUMEN

Nucleoporins are essential components of the nuclear pore complex (NPC). Only a few diseases have been attributed to NPC dysfunction. Steroid-resistant nephrotic syndrome (SRNS), a frequent cause of chronic kidney disease, is caused by dysfunction of glomerular podocytes. Here we identify in eight families with SRNS mutations in NUP93, its interaction partner NUP205 or XPO5 (encoding exportin 5) as hitherto unrecognized monogenic causes of SRNS. NUP93 mutations caused disrupted NPC assembly. NUP93 knockdown reduced the presence of NUP205 in the NPC, and, reciprocally, a NUP205 alteration abrogated NUP93 interaction. We demonstrate that NUP93 and exportin 5 interact with the signaling protein SMAD4 and that NUP93 mutations abrogated interaction with SMAD4. Notably, NUP93 mutations interfered with BMP7-induced SMAD transcriptional reporter activity. We hereby demonstrate that mutations of NUP genes cause a distinct renal disease and identify aberrant SMAD signaling as a new disease mechanism of SRNS, opening a potential new avenue for treatment.


Asunto(s)
Carioferinas/genética , Síndrome Nefrótico/genética , Proteínas de Complejo Poro Nuclear/genética , Edad de Inicio , Secuencia de Aminoácidos , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Resistencia a Medicamentos/genética , Femenino , Genes Recesivos , Estudios de Asociación Genética , Ligamiento Genético , Células HEK293 , Humanos , Lactante , Carioferinas/metabolismo , Masculino , Ratones , Datos de Secuencia Molecular , Mutación , Síndrome Nefrótico/tratamiento farmacológico , Proteínas de Complejo Poro Nuclear/metabolismo , Estrés Oxidativo , Podocitos/fisiología , Análisis de Secuencia de ADN , Esteroides/farmacología , Esteroides/uso terapéutico , Xenopus laevis
17.
PLoS One ; 10(10): e0140116, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26448484

RESUMEN

Podocytes are essential for the function of the kidney glomerular filter. A highly differentiated cytoskeleton is requisite for their integrity. Although much knowledge has been gained on the organization of cortical actin networks in podocyte's foot processes, less is known about the molecular organization of the microtubular cytoskeleton in primary processes and the cell body. To gain an insight into the organization of the microtubular cytoskeleton of the podocyte, we systematically analyzed the expression of microtubule associated proteins (Maps), a family of microtubules interacting proteins with known functions as regulator, scaffold and guidance proteins. We identified microtubule associated protein 1b (MAP1B) to be specifically enriched in podocytes in human and rodent kidney. Using immunogold labeling in electron microscopy, we were able to demonstrate an enrichment of MAP1B in primary processes. A similar association of MAP1B with the microtubule cytoskeleton was detected in cultured podocytes. Subcellular distribution of MAP1B HC and LC1 was analyzed using a double fluorescent reporter MAP1B fusion protein. Subsequently we analyzed mice constitutively depleted of MAP1B. Interestingly, MAP1B KO was not associated with any functional or structural alterations pointing towards a redundancy of MAP proteins in podocytes. In summary, we established MAP1B as a specific marker protein of the podocyte microtubular cytoskeleton.


Asunto(s)
Barrera de Filtración Glomerular/metabolismo , Podocitos/metabolismo , Animales , Biomarcadores , Células Cultivadas , Femenino , Tasa de Filtración Glomerular , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Especificidad de Órganos , Podocitos/ultraestructura
18.
Am J Hum Genet ; 97(2): 291-301, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26235987

RESUMEN

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Genes Dominantes/genética , Músculo Liso/embriología , Mutación/genética , Proteínas de Dominio T Box/genética , Uréter/embriología , Sistema Urinario/anomalías , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Exoma/genética , Células HEK293 , Humanos , Inmunohistoquímica , Inmunoprecipitación , Microscopía Fluorescente , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN
19.
Hum Mutat ; 36(12): 1150-4, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26294094

RESUMEN

The VATER/VACTERL association describes the combination of congenital anomalies including vertebral defects, anorectal malformations, cardiac defects, tracheoesophageal fistula with or without esophageal atresia, renal malformations, and limb defects. As mutations in ciliary genes were observed in diseases related to VATER/VACTERL, we performed targeted resequencing of 25 ciliary candidate genes as well as disease-associated genes (FOXF1, HOXD13, PTEN, ZIC3) in 123 patients with VATER/VACTERL or VATER/VACTERL-like phenotype. We detected no biallelic mutation in any of the 25 ciliary candidate genes; however, identified an identical, probably disease-causing ZIC3 missense mutation (p.Gly17Cys) in four patients and a FOXF1 de novo mutation (p.Gly220Cys) in a further patient. In situ hybridization analyses in mouse embryos between E9.5 and E14.5 revealed Zic3 expression in limb and prevertebral structures, and Foxf1 expression in esophageal, tracheal, vertebral, anal, and genital tubercle tissues, hence VATER/VACTERL organ systems. These data provide strong evidence that mutations in ZIC3 or FOXF1 contribute to VATER/VACTERL.


Asunto(s)
Canal Anal/anomalías , Ano Imperforado/genética , Esófago/anomalías , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Proteínas de Homeodominio/genética , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Radio (Anatomía)/anomalías , Columna Vertebral/anomalías , Tráquea/anomalías , Factores de Transcripción/genética , Alelos , Animales , Ano Imperforado/diagnóstico , Cilios/genética , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Factores de Transcripción Forkhead/metabolismo , Genotipo , Cardiopatías Congénitas/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Humanos , Inmunohistoquímica , Deformidades Congénitas de las Extremidades/diagnóstico , Masculino , Ratones , Mutación , Fenotipo , Factores de Transcripción/metabolismo
20.
J Exp Bot ; 66(21): 6927-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26276866

RESUMEN

The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Giberelinas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , Imagen por Resonancia Magnética , Proteínas de Plantas/metabolismo , Semillas/genética , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA