Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nematol ; 55(1): 20230031, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38026554

RESUMEN

Anguina tritici is the first plant-parasitic nematode described in literature, dating back to the year 1743. It is responsible for causing earcockle (seed gall) and tundu diseases in wheat and rye. Notably, this nematode has been observed to survive in an anhydrobiotic state for up to 32 years within wheat seed galls. These exceptional characteristics have inspired the sequencing of the A. tritici genome. In this study, we present the initial draft genome of A. tritici, obtained using the Illumina MiSeq platform with coverage of 60-fold. The genome is estimated to have a size of 164 Mb and comprises 39,965 protein-coding genes, exhibiting a GC content of 39.1%. The availability of this genome data will serve as a foundation for future functional biological investigations, particularly for genes whose functions remain unknown to this day.

2.
Int J Biol Macromol ; 252: 126324, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37591427

RESUMEN

Amino acid transporters (AATs), besides, being a crucial component for nutrient partitioning system are also vital for growth and development of the plants and stress resilience. In order to understand the role of AAT genes in seed quality proteins, a comprehensive analysis of AAT gene family was carried out in chickpea leading to identification of 109 AAT genes, representing 10 subfamilies with random distribution across the chickpea genome. Several important stress responsive cis-regulatory elements like Myb, ABRE, ERE were detected in the promoter region of these CaAAT genes. Most of the genes belonging to the same sub-families shared the intron-exon distribution pattern owing to their conserved nature. Random distribution of these CaAAT genes was observed on plasma membrane, vacuolar membrane, Endoplasmic reticulum and Golgi membranes, which may be associated to distinct biochemical pathways. In total 92 out 109 CaAAT genes arise as result of duplication, among which segmental duplication was more prominent over tandem duplication. As expected, the phylogenetic tree was divided into 2 major clades, and further sub-divided into different sub-families. Among the 109 CaAAT genes, 25 were found to be interacting with 25 miRNAs, many miRNAs like miR156, miR159 and miR164 were interacting only with single AAT genes. Tissues specific expression pattern of many CaAAT genes was observed like CaAAP7 and CaAVT18 in nodules, CaAAP17, CaAVT5 and CaCAT9 in vegetative tissues while CaCAT10 and CaAAP23 in seed related tissues as per the expression analysis. Mature seed transcriptome data revealed that genotypes having high protein content (ICC 8397, ICC 13461) showed low CaAATs expression as compared to the genotypes having low protein content (FG 212, BG 3054). Amino acid profiling of these genotypes revealed a significant difference in amount of essential and non-essential amino acids, probably due to differential expression of CaAATs. Thus, the present study provides insights into the biological role of AAT genes in chickpea, which will facilitate their functional characterization and role in various developmental stages, stress responses and involvement in nutritional quality enhancement.


Asunto(s)
Cicer , MicroARNs , Cicer/genética , Cicer/metabolismo , Filogenia , Proteínas de Plantas/química , Semillas , Sistemas de Transporte de Aminoácidos/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Front Plant Sci ; 13: 1007322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426141

RESUMEN

One of the major obligate plant parasites causing massive economic crop losses belongs to the class of root-knot nematodes (RKNs). Targeting of major nematode parasitism genes via Host Delivered-RNAi (HD-RNAi) to confer silencing is established as one of the most effective approaches to curb nematode infection. Utilizing nematode-responsive root-specific (NRRS) promoters to design a dsRNA molecule targeting approach to hamper nematode parasitism. Here, a previously validated peroxidase gall specific promoter, pAt2g18140, from Arabidopsis was employed to express the dsRNA construct of the nematode effector gene Mi-msp2 from Meloidogyne incognita. Arabidopsis RNAi lines of CaMV35S::Mi-msp2-RNAi and pAt2g18140::Mi-msp2-RNAi were compared with control plants to assess the decrease in plant nematode infection. When subjected to infection, the maximum reductions in the numbers of galls, females and egg masses in the CaMV35S::Mi-msp2-RNAi lines were 61%, 66% and 95%, respectively, whereas for the pAt2g18140::Mi-msp2-RNAi lines, they were 63%, 68% and 100%, respectively. The reduction in transcript level ranged from 79%-82% for CaMV35S::Mi-msp2-RNAi and 72%-79% for the pAt2g18140::Mi-msp2-RNAi lines. Additionally, a reduction in female size and a subsequent reduction in next-generation fecundity demonstrate the efficacy and potential of the gall specific promoter pAt2g18140 for utilization in the development of HD-RNAi constructs against RKN, as an excellent alternative to the CaMV35S promoter.

4.
Sci Rep ; 12(1): 9778, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697711

RESUMEN

The RNA helicases are an important class of enzymes which are known to influence almost every aspect of RNA metabolism. The majority of RNA helicases belong to the SF2 (superfamily 2) superfamily, members of which are further categorized into three separate subfamilies i.e., the DEAD, DEAH and DExD/H-box subfamilies. In chickpea, these RNA helicases have not been characterized until now. A genome-wide analysis across the chickpea genome led to the identification of a total of 150 RNA helicase genes which included 50 DEAD, 33 DEAH and 67 DExD/H-box genes. These were distributed across all the eight chromosomes, with highest number on chromosome 4 (26) and least on chromosome 8 (8). Gene duplication analysis resulted in identification of 15 paralogous gene pairs with Ka/Ks values < 1, indicating towards the genes being under purifying selection during the course of evolution. The promoter regions of the RNA helicase genes were enriched in cis-acting elements like the light and ABA-responsive elements. The drought responsiveness of the genes was analysed by studying the expression profiles of few of these genes, in two different genotypes, the cultivated variety ICC 8261 (kabuli, C. arietinum) and the wild accession ILWC 292 (C. reticulatum), through qRT-PCR. These genotypes were selected based on their drought responsiveness in a field experiment, where it was observed that the percentage (%) reduction in relative water content (RWC) and membrane stability index (MSI) for the drought stressed plants after withholding water for 24 days, over the control or well-watered plants, was least for both the genotypes. The genes CaDEAD50 and CaDExD/H66 were identified as drought-responsive RNA helicase genes in chickpea. The protein encoded by the CaDExD/H66 gene shares a high degree of homology with one of the CLSY (CLASSY) proteins of A. thaliana. We hypothesize that this gene could possibly be involved in regulation of DNA methylation levels in chickpea by regulating siRNA production, in conjunction with other proteins like the Argonaute, RNA dependent RNA polymerases and Dicer-like proteins.


Asunto(s)
Cicer , Cicer/metabolismo , Sequías , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , ARN/metabolismo , Agua/metabolismo
5.
3 Biotech ; 12(3): 64, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35186661

RESUMEN

The GRAS (gibberellic acid insensitive, repressor of GAI and scarecrow) transcription factors (TFs) regulate diverse biological processes involved in plant growth and development. These TFs are also known to regulate gene expression in response to various abiotic stress factors like cold, drought, etc. In chickpea one of the most devastating abiotic stress factors is terminal drought. The GRAS TF family has not been characterized in chickpea (Cicer arietinum L.) until now. In this study, we report 46 GRAS TF genes (CaGRAS genes) in the chickpea genome. The CaGRAS proteins were categorized into nine subfamilies based on their phylogenetic relationship with known GRAS members of Arabidopsis and soybean. The PAT subfamily was the largest consisting of ten CaGRAS members whereas the LAS subfamily was the smallest with only one member. Gene duplication analysis revealed that segmental duplication was the primary reason for the expansion of this gene family within the chickpea genome. The gene expression levels of CaGRAS genes were analysed using two different chickpea varieties contrasting for drought tolerance trait, i.e., ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive). On exposure to drought stress, the two chickpea genotypes, exhibited differential drought response, which was quantified and estimated in terms of differences in leaf relative water content (RWC). The well-watered or control plants of the drought tolerant variety were able to maintain a higher leaf RWC by the end of the drought stress period, whereas the control plants of the drought sensitive variety continued to show a decline in leaf RWC. The two genotypes also differed in their root morphologies, under well-watered and drought stress conditions. The gene expression analysis revealed a potential role of PAT, SCR, SCL3 and SHR GRAS members in the regulation of differential response to drought, in the root tissues, for both the genotypes. CaGRAS 12 (SCR) was identified as a drought-responsive GRAS TF gene, which could serve as a potential candidate gene for utilization in developing chickpea varieties with improved drought tolerance. This study demonstrates the drought-responsive expression of CaGRAS genes in chickpea and also describes the morpho-physiological response of chickpea plants to drought stress conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03104-z.

6.
Plant Sci ; 298: 110592, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32771150

RESUMEN

The root-knot nematode (RKN) Meloidogyne incognita is considered one of the most damaging pests among phytonematodes. The majority of nematode oesophageal gland effector genes are indispensable in facilitating M. incognita parasitization of host plants. We report the effect of host-delivered RNAi (HD-RNAi) silencing of four selected M. incognita effector genes, namely, Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, in Arabidopsis thaliana. Mi-msp5, Mi-msp18 and Mi-msp24, which are dorsal gland genes, were found to be maximally expressed in the adult female stage, whereas Mi-msp3, which is a sub-ventral gland gene, was maximally expressed in an earlier stage. In transgenic plants expressing dsRNA, the reduction in the number of galls on roots was 89 %, 78 %, 86 % and 89 % for the Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 RNAi events, respectively. Moreover, gene transcript abundance was significantly reduced in RKN females feeding on dsRNA-expressing lines by up to 60 %, 84 %, 31 % and 61 % for Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, respectively. Furthermore, the M. incognita reproduction factor was reduced up to 71-, 344-, 107- and 114-fold in Arabidopsis plants expressing Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 dsRNA constructs, respectively. This study provides a set of potential target genes to curb nematode infestation in economically important crops via the HD-RNAi approach.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Enfermedades de las Plantas/genética , Tylenchoidea/fisiología , Secuencia de Aminoácidos , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Silenciador del Gen , Filogenia , Enfermedades de las Plantas/parasitología , Interferencia de ARN , Alineación de Secuencia
7.
Sci Rep ; 9(1): 17404, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757987

RESUMEN

Root-knot nematodes (RKNs) are devastating parasites that infect thousands of plants. As RKN infection is facilitated by oesophageal gland effector genes, one such effector gene, Mi-msp2, was selected for a detailed characterization. Based on domain analysis, the Mi-MSP2 protein contains an ShKT domain, which is likely involved in blocking K+ channels and may help in evading the plant defence response. Expression of the Mi-msp2 gene was higher in juveniles (parasitic stage of RKNs) than in eggs and adults. Stable homozygous transgenic Arabidopsis lines expressing Mi-msp2 dsRNA were generated, and the numbers of galls, females and egg masses were reduced by 52-54%, 60-66% and 84-95%, respectively, in two independent RNAi lines compared with control plants. Furthermore, expression analysis revealed a significant reduction in Mi-msp2 mRNA abundance (up to 88%) in female nematodes feeding on transgenic plants expressing dsRNA, and northern blot analysis confirmed expression of the Mi-msp2 siRNA in the transgenic plants. Interestingly, a significant reduction in the reproduction factor was observed (nearly 40-fold). These data suggest that the Mi-msp2 gene can be used as a potential target for RKN management in crops of economic importance.


Asunto(s)
Arabidopsis/genética , Arabidopsis/parasitología , Resistencia a la Enfermedad/genética , Silenciador del Gen , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Secuencia de Aminoácidos , Animales , Femenino , Herbivoria , Plantas Modificadas Genéticamente , Proteínas Protozoarias/química
8.
Parasitology ; 145(14): 1896-1906, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29692277

RESUMEN

GLP-1 (abnormal germline proliferation) is a Notch-like receptor protein that plays an essential role in pharyngeal development. In this study, an orthologue of Caenorhabditis elegans glp-1 was identified in Meloidogyne incognita. A computational analysis revealed that the orthologue contained almost all the domains present in the C. elegans gene: specifically, the LIN-12/Notch repeat, the ankyrin repeat, a transmembrane domain and different ligand-binding motifs were present in orthologue, but the epidermal growth factor-like motif was not observed. An expression analysis showed differential expression of glp-1 throughout the life cycle of M. incognita, with relatively higher expression in the egg stage. To evaluate the silencing efficacy of Mi-glp-1, transgenic Arabidopsis plants carrying double-stranded RNA constructs of glp-1 were generated, and infection of these plants with M. incognita resulted in a 47-50% reduction in the numbers of galls, females and egg masses. Females obtained from the transgenic RNAi lines exhibited 40-60% reductions in the transcript levels of the targeted glp-1 gene compared with females isolated from the control plants. Second-generation juveniles (J2s), which were descendants of the infected females from the transgenic lines, showed aberrant phenotypes. These J2s exhibited a significant decrease in the overall distance from the stylet to the metacorpus region, and this effect was accompanied by disruption around the metacorporeal bulb of the pharynx. The present study suggests a role for this gene in organ (pharynx) development during embryogenesis in M. incognita and its potential use as a target in the management of nematode infestations in plants.


Asunto(s)
Arabidopsis/parasitología , Proteínas del Helminto/genética , Enfermedades de las Plantas/parasitología , Interferencia de ARN , Receptores Notch/genética , Tylenchoidea/genética , Animales , Repetición de Anquirina/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Resistencia a la Enfermedad , Familia de Proteínas EGF/genética , Desarrollo Embrionario , Femenino , Estadios del Ciclo de Vida , Plantas Modificadas Genéticamente/parasitología , Tylenchoidea/parasitología
9.
J Plant Res ; 131(3): 525-542, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28474118

RESUMEN

The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.


Asunto(s)
Cicer/genética , Genoma de Planta/genética , Factores de Transcripción del Choque Térmico/genética , Secuencia de Aminoácidos , Cicer/fisiología , Sequías , Duplicación de Gen , Respuesta al Choque Térmico , Calor , Filogenia , Proteínas de Plantas/genética , Salinidad , Alineación de Secuencia , Estrés Fisiológico
10.
Funct Integr Genomics ; 15(1): 27-46, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25274312

RESUMEN

The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.


Asunto(s)
Cicer/genética , Cicer/fisiología , Genes de Plantas , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Secuencia de Bases , Cromosomas de las Plantas/genética , Sequías , Congelación , Duplicación de Gen/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Manitol/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Presión Osmótica/efectos de los fármacos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Análisis de Secuencia de ADN , Estrés Fisiológico/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
11.
PLoS One ; 9(10): e108851, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25295754

RESUMEN

Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5' RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress.


Asunto(s)
Cicer/genética , MicroARNs/genética , Cicer/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Reacción en Cadena en Tiempo Real de la Polimerasa , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA