Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Radiother Oncol ; : 110348, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823583

RESUMEN

BACKGROUND: Hypoxia remains a challenge for the therapeutic management of head and neck squamous cell carcinoma (HNSCC). The combination of radiotherapy with nimorazole has shown treatment benefit in HNSCC, but the precise underlying molecular mechanisms remain unclear. PURPOSE: To assess and to characterize the transcriptomic/epigenetic landscape of HNSCC tumor models showing differential therapeutic response to fractionated radiochemotherapy (RCTx) combined with nimorazole. MATERIALS/METHODS: Bulk RNA-sequencing and DNA methylation experiments were conducted using untreated and treated HNSCC xenografts after 10 fractions of RCTx with and without nimorazole. These tumor models (FaDu, SAS, Cal33, SAT and UT-SCC-45) previously showed a heterogeneous response to RCTx with nimorazole. The prognostic impact of candidate genes was assessed using clinical and gene expression data from HNSCC patients treated with primary RCTx within the DKTK-ROG. RESULTS: Nimorazole responder and non-responder tumor models showed no differences in hypoxia gene signatures However, non-responder models showed upregulation of metabolic pathways. From that, a subset of 15 differentially expressed genes stratified HNSCC patients into low and high-risk groups with distinct outcome. CONCLUSION: In the present study, we found that nimorazole non-responder models were characterized by upregulation of genes involved in Retinol metabolism and xenobiotic metabolic process pathways, which might contribute to identify mechanisms of resistance to nitroimidazole compounds and potentially expand the repertoire of therapeutic options to treat HNSCC.

2.
J Transl Med ; 21(1): 576, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37633930

RESUMEN

BACKGROUND: Tumor hypoxia is associated with resistance to radiotherapy and chemotherapy. In head and neck squamous cell carcinoma (HNSCC), nimorazole, an oxygen mimic, combined with radiotherapy (RT) enabled to improve loco-regional control (LRC) in some patients with hypoxic tumors but it is unknown whether this holds also for radiochemotherapy (RCTx). Here, we investigated the impact of nimorazole combined with RCTx in HNSCC xenografts and explored molecular biomarkers for its targeted use. METHODS: Irradiations were performed with 30 fractions in 6 weeks combined with weekly cisplatin. Nimorazole was applied before each fraction, beginning with the first or after ten fractions. Effect of RCTx with or without addition of nimorazole was quantified as permanent local control after irradiation. For histological evaluation and targeted gene expression analysis, tumors were excised untreated or after ten fractions. Using quantitative image analysis, micromilieu parameters were determined. RESULTS: Nimorazole combined with RCTx significantly improved permanent local control in two tumor models, and showed a potential improvement in two additional models. In these four models, pimonidazole hypoxic volume (pHV) was significantly reduced after ten fractions of RCTx alone. Our results suggest that nimorazole combined with RCTx might improve TCR compared to RCTx alone if hypoxia is decreased during the course of RCTx but further experiments are warranted to verify this association. Differential gene expression analysis revealed 12 genes as potential for RCTx response. When evaluated in patients with HNSCC who were treated with primary RCTx, these genes were predictive for LRC. CONCLUSIONS: Nimorazole combined with RCTx improved local tumor control in some but not in all HNSCC xenografts. We identified prognostic biomarkers with the potential for translation to patients with HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Nimorazol , Humanos , Xenoinjertos , Nimorazol/farmacología , Nimorazol/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Pronóstico , Quimioradioterapia , Hipoxia/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/radioterapia
3.
Radiother Oncol ; 186: 109738, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315579

RESUMEN

BACKGROUND AND PURPOSE: Tumour hypoxia is an established radioresistance factor. A novel hypoxia-activated prodrug CP-506 has been proven to selectively target hypoxic tumour cells and to cause anti-tumour activity. The current study investigates whether CP-506 improves outcome of radiotherapy in vivo. MATERIALS AND METHODS: Mice bearing FaDu and UT-SCC-5 xenografts were randomized to receive 5 daily injections of CP-506/vehicle followed by single dose (SD) irradiation. In addition, CP-506 was combined once per week with fractionated irradiation (30 fractions/6 weeks). Animals were followed-up to score all recurrences. In parallel, tumours were harvested to evaluate pimonidazole hypoxia, DNA damage (γH2AX), expression of oxidoreductases. RESULTS: CP-506 treatment significantly increased local control rate after SD in FaDu, 62% vs. 27% (p = 0.024). In UT-SCC-5, this effect was not curative and only marginally significant. CP-506 induced significant DNA damage in FaDu (p = 0.009) but not in UT- SCC-5. Hypoxic volume (HV) was significantly smaller (p = 0.038) after pretreatment with CP-506 as compared to vehicle in FaDu but not in less responsive UT-SCC-5. Adding CP-506 to fractionated radiotherapy in FaDu did not result in significant benefit. CONCLUSION: The results support the use of CP-506 in combination with radiation in particular using hypofractionation schedules in hypoxic tumours. The magnitude of effect depends on the tumour model, therefore it is expected that applying appropriate patient stratification strategy will further enhance the benefit of CP-506 treatment for cancer patients. A phase I-IIA clinical trial of CP-506 in monotherapy or in combination with carboplatin or a checkpoint inhibitor has been approved (NCT04954599).


Asunto(s)
Carcinoma de Células Escamosas , Profármacos , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/radioterapia , Profármacos/farmacología , Fraccionamiento de la Dosis de Radiación , Hipoxia/patología , Probabilidad
4.
Radiother Oncol ; 183: 109546, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36813172

RESUMEN

PURPOSE: To perform a preclinical trial comparing the efficacy of fractionated radiotherapy versus radiochemotherapy with cisplatin in HPV-positive and negative human head and neck squamous cell carcinoma (HNSCC) xenografts. MATERIAL AND METHODS: Three HPV-negative and three HPV-positive HNSCC xenografts in nude mice were randomized to radiotherapy (RT) alone or to radiochemotherapy (RCT) with weekly cisplatin. To evaluate tumour growth time, 20 Gy radiotherapy (±cisplatin) were administered in 10 fractions over 2 weeks. Dose-response curves for local tumour control were generated for RT with 30 fractions over 6 weeks to different dose levels given alone or combined with cisplatin (RCT). RESULTS: One of three investigated HPV-negative and two out of three HPV-positive tumour models showed a significant increase in local tumour control after RCT compared to RT alone. Pooled analysis of the HPV-positive tumour models showed a statistically significant and substantial benefit of RCT versus RT alone, with an enhancement ratio of 1.34. Although heterogeneity in response to both RT and RCT was also observed between the different HPV-positive HNSCC, these overall were more RT and RCT sensitive than HPV-negative models. CONCLUSION: The impact of adding chemotherapy to fractionated radiotherapy on local control was heterogenous, both in HPV-negative and in HPV-positive tumours, calling for predictive biomarkers. RCT substantially increased local tumour control in the pooled group of all HPV-positive tumours whereas this was not found in HPV-negative tumours. Omission of chemotherapy in HPV-positive HNSCC as part of a treatment de-escalation strategy is not supported by this preclinical trial.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Cisplatino/uso terapéutico , Virus del Papiloma Humano , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Xenoinjertos , Carcinoma de Células Escamosas/patología , Quimioradioterapia
5.
Eur Urol Oncol ; 5(1): 44-51, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34785189

RESUMEN

BACKGROUND: Local ablative radiotherapy (aRT) of oligometastatic prostate cancer (PCa) is very promising and has become a focus of current clinical research. OBJECTIVE: We hypothesize that aRT is safe and effective in gallium-68 prostate-specific membrane antigen targeted positron emission tomography (PSMA-PET)-staged oligometastatic PCa patients. DESIGN, SETTING, AND PARTICIPANTS: A nonrandomized, prospective, investigator-initiated phase 2 trial recruited patients with oligometastatic PCa (five or fewer lymph node or osseous metastases) after local curative therapy, without significant comorbidity and androgen deprivation therapy (ADT), at two German centers from 2014 to 2018. INTERVENTION: All PSMA-PET-positive metastases were treated with aRT. No systemic therapy was initiated. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The primary endpoint was treatment-related toxicity (grade ≥2) 24 mo after aRT. A one-sided single-sample test of proportions was planned to test whether the endpoint occurs in <15% of the patients. Key secondary endpoints were time to progression of prostate-specific antigen (PSA) and time to ADT, which were associated with potential prognostic factors by Cox regression. RESULTS AND LIMITATIONS: Of 72 patients, 63 received aRT (13% dropout rate). The median follow-up was 37.2 mo. No treatment-related grade ≥2 toxicity was observed 2 yr after treatment. The median time to PSA progression and time to ADT were 13.2 and 20.6 mo, respectively. Of the patients, 21.4% were free of PSA progression after 3 yr. CONCLUSIONS: It was observed that aRT is safe, and midterm PSA progression and ADT-free time were achieved in one of five patients. Randomized clinical trials are indicated to further evaluate the option of delaying ADT in selected patients. PATIENT SUMMARY: In this clinical trial, 63 patients with up to five metastases of prostate cancer without androgen deprivation therapy were included. We showed that local ablative radiotherapy is safe and that one in five patients had no recurrent prostate-specific antigen value after 3 yr. Local ablative radiotherapy might be an option to avoid systemic therapy in selected patients.


Asunto(s)
Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Castración , Radioisótopos de Galio , Humanos , Masculino , Tomografía de Emisión de Positrones , Estudios Prospectivos , Próstata/patología , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia
6.
Cancers (Basel) ; 13(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34830750

RESUMEN

Combination treatment of molecular targeted and external radiotherapy is a promising strategy and was shown to improve local tumor control in a HNSCC xenograft model. To enhance the therapeutic value of this approach, this study investigated the underlying molecular response. Subcutaneous HNSCC FaDuDD xenografts were treated with single or combination therapy (X-ray: 0, 2, 4 Gy; anti-EGFR antibody (Cetuximab) (un-)labeled with Yttrium-90 (90Y)). Tumors were excised 24 h post respective treatment. Residual DNA double strand breaks (DSB), mRNA expression of DNA damage response related genes, immunoblotting, tumor histology, and immunohistological staining were analyzed. An increase in number and complexity of residual DNA DSB was observed in FaDuDD tumors exposed to the combination treatment of external irradiation and 90Y-Cetuximab relative to controls. The increase was observed in a low oxygenated area, suggesting the expansion of DNA DSB damages. Upregulation of genes encoding p21cip1/waf1 (CDKN1A) and GADD45α (GADD45A) was determined in the combination treatment group, and immunoblotting as well as immunohistochemistry confirmed the upregulation of p21cip1/waf1. The increase in residual γH2AX foci leads to the blockage of cell cycle transition and subsequently to cell death, which could be observed in the upregulation of p21cip1/waf1 expression and an elevated number of cleaved caspase-3 positive cells. Overall, a complex interplay between DNA damage repair and programmed cell death accounts for the potential benefit of the combination therapy using 90Y-Cetuximab and external radiotherapy.

7.
Int J Radiat Oncol Biol Phys ; 111(5): e63-e74, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343607

RESUMEN

The development of molecular targeted drugs with radiation and chemotherapy is critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of intertumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have used 3-dimensional (3D) cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity, we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small-molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the National Cancer Institute Cancer Therapy Evaluation Program portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with or without relevant biomarker and using clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts of being successfully incorporated into the standard management of hard-to-treat tumors.


Asunto(s)
Terapia Molecular Dirigida , Biomarcadores de Tumor , Humanos , Neoplasias , Preparaciones Farmacéuticas , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Reproducibilidad de los Resultados
9.
Cancers (Basel) ; 13(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919702

RESUMEN

The receptor tyrosine kinase c-MET activates intracellular signaling and induces cell proliferation, epithelial-to-mesenchymal-transition and migration. Within the present study, we validated the prognostic value of c-MET in patients with head and neck squamous cell carcinoma (HNSCC) treated with radio(chemo)therapy using the Cancer Genome Atlas database and found an association of increased MET gene expression and protein phosphorylation with reduced disease-specific and progression-free survival. To investigate the role of c-MET-dependent radioresistance, c-MET-positive cells were purified from established HNSCC cell lines and a reduced radiosensitivity and enhanced sphere-forming potential, compared to the c-MET-depleted cell population, was found in two out of four analyzed cell lines pointing to regulatory heterogeneity. We showed that c-MET is dynamically regulated after irradiation in vitro and in vivo. Interestingly, no direct impact of c-MET on DNA damage repair was found. The therapeutic potential of eight c-MET targeting agents in combination with irradiation demonstrated variable response rates in six HNSCC cell lines. Amongst them, crizotinib, foretinib, and Pha665752 exhibited the strongest radiosensitizing effect. Kinase activity profiling showed an association of crizotinib resistance with compensatory PI3K/AKT and MAP kinase signaling. Overall, our results indicate that c-MET is conferring radioresistance in HNSCC through modulation of intracellular kinase signaling and stem-like features.

10.
Radiother Oncol ; 155: 285-292, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33227356

RESUMEN

BACKGROUND AND PURPOSE: Systemic molecular radiotherapy utilizes internal irradiation by radionuclide-labeled tumor-targeting agents with the potential to destroy (micro-)metastases. However, doses that are applicable in solid tumors do not reach the levels nessecary for tumor control. Thus, the combination of molecular and external radiotherapy is a promising treatment strategy, as enhanced tumor doses can be delivered with and without minor overlapping toxicities. Here, we combined a 90Y-labeled anti-EGFR antibody (Cetuximab) with clinically relevant fractionated radiotherapy in a preclinical trial using head and neck squamous cell carcinoma xenograft tumors. MATERIALS AND METHODS: To model 90Y-Cetuximab uptake for treatment schedule optimization, FaDu-bearing mice were injected with near-infrared-labeled-Cetuximab at different time points during radiotherapy with differing doses. Cetuximab uptake was longitudinally followed by in vivo-optical imaging. Tumor control probability experiments with fractionated radiotherapy (30 fx, 6 weeks, 8 dose groups/ arm) in combination with 90Y-Cetuximab were performed to test the curative potential. RESULTS: Imaging of near-infrared-labeled-Cetuximab uptake revealed that low to moderate external beam doses can enhance antibody uptake. Using the optimized schedule, combination of molecular and external radiotherapy using 90Y-Cetuximab at a dose that did not result in permanent tumor inactivation in previous experiments, led to substantially increased tumor control compared to radiotherapy alone. CONCLUSION: Our results indicate that combination of radiolabeled therapeutics with clinically relevant fractionated radiotherapy has a remarkable potential to improve curative treatment outcome. Application of some radiation dose prior to injection may improve drug uptake and enable patient stratification and treatment personalization via a corresponding PET-tracer during therapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Animales , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Cetuximab , Receptores ErbB , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello
11.
Int J Cancer ; 147(2): 472-477, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31359406

RESUMEN

Recent clinical data have linked KRAS/TP53 comutation (mut) to resistance to radiotherapy (RT), but supporting laboratory in vivo evidence is lacking. In addition, the ability of different radiation doses, with/without epidermal growth factor receptor (EGFR)-directed treatment, to achieve local tumor control as a function of KRAS status is unknown. Here, we assessed clonogenic radiation survival of a panel of annotated lung cancer cell lines. KRASmut/TP53mut was associated with the highest radioresistance in nonisogenic and isogenic comparisons. To validate these findings, isogenic TP53mut NCI-H1703 models, KRASmut or wild-type (wt), were grown as heterotopic xenografts in nude mice. A clinical RT schedule of 30 fractions over 6 weeks was employed. The dose that controlled 50% of tumors (TCD50 ) was calculated. The TCD50 for KRASwt/TP53mut xenografts was 43.1 Gy whereas KRASmut/TP53mut tumors required a 1.9-fold higher TCD50 of 81.4 Gy. The EGFR inhibitor erlotinib radiosensitized KRASmut but not KRASwt cells and xenografts. The TCD50 associated with adding erlotinib to RT was 58.8 Gy for KRASmut, that is, a ~1.4-fold dose enhancement. However, the EGFR antibody cetuximab did not have a radiosensitizing effect. In conclusion, we demonstrate for the first time that KRASmut in a TP53mut background confers radioresistance when studying a clinical RT schedule and local control rather than tumor growth delay. Despite the known unresponsiveness of KRASmut tumors to EGFR inhibitors, erlotinib radiosensitized KRASmut tumors. Our data highlight KRAS/TP53 comutation as a candidate biomarker of radioresistance that can be at least partially reversed by dose escalation or the addition of a targeted agent.


Asunto(s)
Clorhidrato de Erlotinib/administración & dosificación , Neoplasias Pulmonares/terapia , Proteínas Proto-Oncogénicas p21(ras)/genética , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Proteína p53 Supresora de Tumor/genética , Células A549 , Animales , Línea Celular Tumoral , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Receptores ErbB/antagonistas & inhibidores , Clorhidrato de Erlotinib/farmacología , Femenino , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Desnudos , Mutación , Fármacos Sensibilizantes a Radiaciones/farmacología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Radiother Oncol ; 124(3): 496-503, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28807520

RESUMEN

BACKGROUND AND PURPOSE: Improvement of the results of radiotherapy by EGFR inhibitors is modest, suggesting significant intertumoural heterogeneity of response. To identify potential biomarkers, a preclinical trial was performed on ten different human squamous cell carcinoma xenografts of the head and neck (HNSCC) studying in vivo and ex vivo the effect of fractionated irradiation and EGFR inhibition. Local tumour control and tumour growth delay were correlated with potential biomarkers, e.g. EGFR gene amplification and radioresponse-associated gene expression profiles. MATERIAL AND METHODS: Local tumour control 120days after end of irradiation was determined for fractionated radiotherapy alone (30f, 6weeks) or after simultaneous EGFR-inhibition with cetuximab. The EGFR gene amplification status was determined using FISH. Gene expression analyses were performed using an in-house gene panel. RESULTS: Six out of 10 investigated tumour models showed a significant increase in local tumour control for the combined treatment of cetuximab and fractionated radiotherapy compared to irradiation alone. For 3 of the 6 responding tumour models, an amplification of the EGFR gene could be demonstrated. Gene expression profiling of untreated tumours revealed significant differences between amplified and non-amplified tumours as well as between responder and non-responder tumours to combined radiotherapy and cetuximab. CONCLUSION: The EGFR amplification status, in combination with gene expression profiling, may serve as a predictive biomarker for personalized interventional strategies regarding combined treatment of cetuximab and fractionated radiotherapy and should, as a next step, be clinically validated.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/terapia , Cetuximab/uso terapéutico , Receptores ErbB/genética , Amplificación de Genes , Perfilación de la Expresión Génica , Neoplasias de Cabeza y Cuello/terapia , Animales , Terapia Combinada , Fraccionamiento de la Dosis de Radiación , Receptores ErbB/antagonistas & inhibidores , Xenoinjertos , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Clin Transl Radiat Oncol ; 2: 7-12, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29657993

RESUMEN

BACKGROUND: Radiotherapy has a high curative potential in localized prostate cancer, however, there are still patients with locally advanced tumours who face a considerable risk of recurrence. Radiosensitization using molecular targeted drugs could help to optimize treatment for this high-risk group. The PI3K/Akt pathway is overexpressed in many prostate cancers and is correlated to radioresistance. Nelfinavir, an HIV protease inhibitor (HPI), was found to block this pathway and to radiosensitize cancer cells of different origin. This is the first study examining the effect of nelfinavir in combination with irradiation on prostate cancer cell survival in vitro as well as on growth time and local tumour control in vivo. METHODS: The in vitro effect of nelfinavir on radioresponse of PC-3 was tested by colony formation assay with 10 µM nelfinavir. In vivo, the effect of nelfinavir alone and in combination with irradiation was tested in nude mice carrying PC-3 xenografts. For evaluating tumour growth time, mice were treated with 80 mg nelfinavir/kg body weight, daily at 5 days per week over 6 weeks. Simultaneous irradiation with 30 fractions and total doses between 30 and 120 Gy was applied to calculate local tumour control for day 180 after treatment. RESULTS: Nelfinavir inhibited Akt phosphorylation at Ser473 and showed a minor but significant effect on clonogenic cell survival in vitro with slightly higher cell survival rates after combined treatment. The treatment of PC-3 xenografts with nelfinavir alone led to no significant increase of tumour growth time and no improvement of local tumour control. CONCLUSIONS: Despite promising growth delay effects of nelfinavir in other tumour models and first clinical applications of this drug as anti-cancer agent, PC-3 prostate cancer cells express no or only minor sensitivity to nelfinavir treatment alone and no radiosensitizing effect in vitro or in vivo.

14.
Oncotarget ; 6(33): 34494-509, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26460734

RESUMEN

Despite recent advances in understanding of the molecular pathogenesis and improvement of treatment techniques, locally advanced head and neck squamous cell carcinoma (HNSCC) remains associated with an unfavorable prognosis. Compelling evidence suggests that cancer stem cells (CSC) may cause tumor recurrence if they are not eradicated by current therapies as radiotherapy or radio-chemotherapy. Recent in vitro studies have demonstrated that CSCs may be protected from treatment-induced death by multiple intrinsic and extrinsic mechanisms. Therefore, early determination of CSC abundance in tumor biopsies prior-treatment and development of therapeutics, which specifically target CSCs, are promising strategies to optimize treatment. Here we provide evidence that aldehyde dehydrogenase (ALDH) activity is indicative for radioresistant HNSCC CSCs. Our study suggests that ALDH+ cells comprise a population that maintains its tumorigenic properties in vivo after irradiation and may provide tumor regrowth after therapy. We found that ALDH activity in HNSCC cells can be attributed, at least in part, to the ALDH1A3 isoform and inhibition of the ALDH1A3 expression by small interfering RNA (siRNA) decreases tumor cell radioresistance. The expression dynamic of ALDH1A3 upon irradiation by either induction or selection of the ALDH1A3 positive population correlates to in vivo curability, suggesting that changes in protein expression during radiotherapy are indicative for tumor radioresistance. Our data indicate that ALDH1A3+ HNSCC cells may contribute to tumor relapse after irradiation, and inhibition of this cell population might improve therapeutic response to radiotherapy.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Células Madre Neoplásicas/patología , Tolerancia a Radiación/fisiología , Animales , Biomarcadores de Tumor/análisis , Western Blotting , Carcinoma de Células Escamosas/enzimología , Línea Celular Tumoral , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Neoplasias de Cabeza y Cuello/enzimología , Humanos , Ratones , Ratones Desnudos , Células Madre Neoplásicas/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Carcinoma de Células Escamosas de Cabeza y Cuello , Análisis de Matrices Tisulares , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Radiat Oncol ; 9: 207, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25234922

RESUMEN

BACKGROUND: The transcription factor hypoxia-inducible factor-1 (HIF-1) pathway plays an important role in tumor response to cytotoxic treatments. We investigated the effects of a novel small molecule inhibitor of mitochondrial complex I and hypoxia-induced HIF-1 activity BAY-87-2243, on tumor microenvironment and response of human squamous cell carcinoma (hSCC) to clinically relevant fractionated radiotherapy (RT) with and without concomitant chemotherapy. METHODS: When UT-SCC-5 hSCC xenografts in nude mice reached 6 mm in diameter BAY-87-2243 or carrier was administered before and/or during RT or radiochemotherapy with concomitant cisplatin (RCT). Local tumor control was evaluated 150 days after irradiation and the doses to control 50% of tumors (TCD50) were compared between treatment arms. Tumors were excised at different time points during BAY-87-2243 or carrier treatment for western blot and immunohistological investigations. RESULTS: BAY-87-2243 markedly decreased nuclear HIF-1α expression and pimonidazole hypoxic fraction already after 3 days of drug treatment. BAY-87-2243 prior to RT significantly reduced TCD50 from 123 to 100 Gy (p=0.037). Additional BAY-87-2243 application during RT did not decrease TCD50. BAY-87-2243 before and during radiochemotherapy did not improve local tumor control. CONCLUSIONS: Pronounced reduction of tumor hypoxia by application of BAY-87-2243 prior to RT improved local tumor control. The results demonstrate that radiosensitizing effect importantly depends on treatment schedule. The data support further investigations of HIF-1 pathway inhibitors for radiotherapy and of predictive tests to select patients who will benefit from this combined treatment.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Oxadiazoles/farmacología , Pirazoles/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Antineoplásicos/farmacología , Western Blotting , Hipoxia de la Célula/efectos de los fármacos , Quimioradioterapia/métodos , Fraccionamiento de la Dosis de Radiación , Humanos , Ratones , Ratones Desnudos , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Radiother Oncol ; 110(2): 362-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24440046

RESUMEN

PURPOSE: The effect of radioimmunotherapy (RIT) using the therapeutic radionuclide Y-90 bound to the anti-EGFR antibody cetuximab combined with external beam irradiation (EBRT) (EBRIT) on permanent local tumor control in vivo was examined. METHODS: Growth delay was evaluated in three human squamous cell carcinoma models after RIT with [(90)Y]Y-(CHX-A''-DTPA)4-cetuximab (Y-90-cetuximab). The EBRT dose required to cure 50% of the tumors (TCD50) for EBRT alone or EBRIT was evaluated in one RIT-responder (FaDu) and one RIT-non-responder (UT-SCC-5). EGFR expression and microenvironmental parameters were evaluated in untreated tumors, bioavailability was visualized by PET using ([(86)Y]Y-(CHX-A''-DTPA)4-cetuximab (Y-86-cetuximab) and biodistribution using Y-90-cetuximab. RESULTS: In UT-SCC-8 and FaDu but not in UT-SCC-5 radiolabeled cetuximab led to significant tumor growth delay. TCD50 after EBRT was significantly decreased by EGFR-targeted RIT in FaDu but not in UT-SCC-5. In contrast to EGFR expression, parameters of the tumor micromilieu and in particular the Y-90-cetuximab biodistribution or Y-86-cetuximab visualization in PET correlated with the responsiveness to RIT or EBRIT. CONCLUSION: EGFR-targeted EBRIT can improve permanent local tumor control compared to EBRT alone. PET imaging of bioavailability of labeled cetuximab appears to be a suitable predictor for response to EBRIT. This theragnostic approach should be further explored for clinical translation.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/radioterapia , Receptores ErbB/inmunología , Inmunotoxinas/administración & dosificación , Radioisótopos de Itrio/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Monoclonales Humanizados/farmacocinética , Carcinoma de Células Escamosas/inmunología , Línea Celular Tumoral , Cetuximab , Femenino , Humanos , Inmunotoxinas/inmunología , Inmunotoxinas/farmacocinética , Isotiocianatos/química , Masculino , Ratones , Ratones Desnudos , Ácido Pentético/análogos & derivados , Ácido Pentético/química , Radioinmunoterapia , Radiofármacos/administración & dosificación , Radiofármacos/inmunología , Distribución Aleatoria , Distribución Tisular , Radioisótopos de Itrio/química , Radioisótopos de Itrio/farmacocinética
17.
Int J Radiat Oncol Biol Phys ; 88(1): 159-66, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24331663

RESUMEN

PURPOSE: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. METHODS AND MATERIALS: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD50) was calculated. RESULTS: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD50, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD50. CONCLUSIONS: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of radiation response. Whether this mechanism contributes to the improved outcome of fractionated chemoradiation therapy warrants further investigation.


Asunto(s)
Aminas/farmacología , Hipoxia de la Célula/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Tolerancia a Radiación/efectos de los fármacos , Animales , Bromodesoxiuridina/metabolismo , Carcinoma de Células Escamosas/metabolismo , Hipoxia de la Célula/fisiología , Núcleo Celular/metabolismo , Fraccionamiento de la Dosis de Radiación , Femenino , Xenoinjertos , Humanos , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Desnudos , Trasplante de Neoplasias/métodos , Nitroimidazoles/farmacología , Tolerancia a Radiación/fisiología , Fármacos Sensibilizantes a Radiaciones/farmacología , Distribución Aleatoria , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...