Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; 19(16): e202301096, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38146061

RESUMEN

We investigated supported-MoO3 materials effective for the chemical looping dry reforming of methane (CL-DRM) to decrease the reaction temperature. Ni-modified molybdenum zirconia (Ni/MoO3/ZrO2) showed CL-DRM activity under isothermal reaction conditions of 650 °C, which was 100-200 °C lower than the previously reported oxide-based materials. Ni/MoO3/ZrO2 activity strongly depends on the MoO3 loading amount. The optimal loading amount was 9.0 wt.% (Ni/MoO3(9.0)/ZrO2), wherein two-dimensional polymolybdate species were dominantly formed. Increasing the loading amount to more than 12.0 wt.% resulted in a loss of activity owing to the formation of bulk Zr(MoO4)2 and/or MoO3. In situ Mo K-edge XANES studies revealed that the surface polymolybdate species serve as oxygen storage sites. The Mo6+ species were reduced to Mo4+ species by CH4 to produce CO and H2. The reduced Mo species reoxidized by CO2 with the concomitant formation of CO. The developed Ni/MoO3(9.0)/ZrO2 was applied to the long-term CL-DRM under high concentration conditions (20 % CH4 and 20 % CO2) at 650 °C, with two pathways possible for converting CH4 and CO2 to CO and H2 via the redox reaction of the Mo species and coke formation.

2.
J Phys Chem Lett ; 15(1): 156-164, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38149933

RESUMEN

Negative thermal expansion (NTE) materials generally have high-symmetry space groups, large average atomic volumes, and corner-sharing octahedral and tetrahedral coordination structures. By contrast, monoclinic α-Cu2P2O7, which has a small average atomic volume and edge-sharing structure, has been reported to exhibit NTE, the detailed mechanism of which is unclear. In this study, we investigate the A2B2O7 polymorphs and analyze the NTE behavior of α-Cu2P2O7 using first-principles lattice-dynamics calculations. From the polymorphism investigation in 20 A2B2O7 compounds using 6 representative crystal structures, small A and B cationic radii are found to stabilize the α-Cu2P2O7-type structure. We then analyze the NTE behavior of α-Cu2P2O7 using quasi-harmonic approximation. Our calculated thermal expansion coefficients and anisotropic atomic displacement parameters were in good agreement with those of the experimental reports at low temperatures. From the mode-Grüneisen parameter distribution plotted over the entire first-Brillouin zone, we found that the phonon contributing most significantly to NTE emerges not into the special points but between them. In this phonon mode, the O connecting two PO4 tetrahedra rotates, and the Cu and O vibrate perpendicular to the bottom of the CuO5 pyramidal unit, which folds the ac lattice plane. This vibration behavior can explain the experimentally reported anisotropic NTE behavior of α-Cu2P2O7. Our results demonstrate that the most negative mode-Grüneisen parameter contributing to NTE behavior is not always located on high-symmetry special points, indicating the importance of lattice vibration analyses for the entire first-Brillouin zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA