Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Biol Sport ; 41(2): 139-145, 2024 Mar.
Article En | MEDLINE | ID: mdl-38524819

Foam rolling (FR) intervention has recently attracted attention in sports and rehabilitation settings. However, the effects of FR using different rolling durations have not been fully clarified. Thus, this study focused on FR durations and examined the acute and prolonged (i.e., 20-min; 40-min, 60-min) effects of different FR intervention durations on maximal voluntary concentric contractions (MVC-CON), knee flexion range of motion (ROM), pain pressure threshold (PPT), and tissue hardness. The participants were 10 male university students (22.5 ± 1.0 years), and the target muscles were the dominant leg knee extensors. Three sets of 60-seconds FR interventions were performed in the randomized crossover trials in each condition. The three intervention conditions were fast (1 rolling/2 s, 30-repetition × 3 sets, 90 repetitions), medium (1 rolling/6 s, 10-repetition × 3 sets, 30 repetitions), and slow speed (1 rolling/12 s, 5-repetition × 3 sets, 15 repetitions). Before as well as immediately, 20-min, 40-min, and 60-min after the interventions, MVC-CON, ROM PPT, and tissue hardness were measured. The results showed no interaction effect in the acute effect but a main effect of time for all variables (p < 0.05). Also, no interaction was observed in prolonged effect, but main effects of time were observed in knee flexion ROM, PPT, and tissue hardness (p < 0.01) but not for MVC-CON. Post-hoc tests showed significant PPT (p < 0.05) and knee flexion ROM (p < 0.01) increases up to 20- and 60-minutes respectively after all interventions. Tissue hardness was significantly (p < 0.01) decreased up to 60-minutes after all interventions. This study showed that the FR intervention changed ROM, PPT, tissue hardness, and MVC-CON regardless of rolling duration and that the effects persisted up to 20-60 minutes.

2.
Biol Sport ; 41(2): 19-26, 2024 Mar.
Article En | MEDLINE | ID: mdl-38524825

Recently, Foam Rolling (FR) and Vibration Foam Rolling (VFR) have attracted attention in sports and rehabilitation fields. Previous studies have shown that FR and VFR acute interventions effectively increase the range of movement (ROM) and decrease tissue hardness. For application to sports and rehabilitation, it is necessary to compare the acute and prolonged effects of short duration FR and VFR. Therefore, this study aimed to compare and investigate the acute and prolonged (15 minutes) effects of short duration (30-s) FR and VFR interventions on knee extensors. The subjects were 14 male university students (22.4 ± 1.0 years old), in which the knee extensors of the dominant leg were tested. In a cross-over trial, 30-s of FR or VFR were performed with 2-s rolling of the anterior thigh (15 rolls). The frequency of VFR was 35 Hz. Measurements included knee flexion ROM, pain pressure threshold (PPT), tissue hardness, and countermovement jump height. The results of this study showed no interaction effects for all variables, but main time effects were observed for knee flexion ROM, PPT, and tissue hardness. Post-hoc tests showed that knee flexion ROM increased up to 10 minutes after the intervention. PPT significantly increased, and tissue hardness significantly decreased up to 15 minutes after intervention. This study showed that 30-s FR and VFR interventions effectively increased ROM, PPT, and decreased tissue hardness. The effects were prolonged up to 10-15 minutes after the intervention. The results of this study show no advantage of VFR over FR with acute short-term interventions.

3.
J Sports Sci Med ; 22(3): 389-396, 2023 09.
Article En | MEDLINE | ID: mdl-37711712

Static stretching (SS), foam rolling (FR), and a combination of both are used as warm-ups for sports and training. However, no reports have compared or examined the warm-up effects of short-term interventions (i.e., 30-s). Therefore, this study was designed to compare and examine the effects of short-term SS, FR, and SS+FR on knee extensors. The dominant knee extensors of 14 male university students (22.0 ± 1.3 years old) were tested. Five conditions were randomized: 60-s SS, 60-s FR, 30-s SS+ 30-s FR, 30-s SS, and 30-s FR to examine differences in intervention method, duration, and combined. The measures were knee flexion range of motion (ROM), pain pressure threshold (PPT), tissue hardness, maximum voluntary contraction-isometric (MVC-ISO), and MVC-concentric (MVC-CON) torques, measured before and after the intervention. Knee flexion ROM (d = 0.40, d = 0.59, d = 0.54, d = 0.59, d = 0.52 respectively) and PPT (d = 0.77, d = 0.60, d = 0.90, d = 0.74, d = 0.52, respectively) were significantly increased (p < 0.01), and tissue hardness (d = -0.79, d = -0.63, d = -0.53, d = -0.59, d = -0.72, respectively) was significantly decreased (p < 0.01) in all conditions. However, MVC-ISO decreased significantly (p < 0.01) in the 60-s SS and 30-s SS conditions but did not affect MVC-CON in all conditions. The results of this study revealed that SS, FR, and SS+FR interventions for a short-term as a warm-up before exercise were effective in increasing ROM, PPT, and decreasing tissue hardness. However, SS intervention with more than 30-s on the knee extensors decreased muscle strength, so short-term FR intervention is recommended when the goal is to increase ROM while maintaining both MVC-ISO and MVC-CON torques. Similarly, a short-term FR intervention after a short-term SS can eliminate the effect of strength impairments.


Muscle Stretching Exercises , Male , Humans , Young Adult , Adult , Knee Joint , Muscle Strength , Pain Threshold , Range of Motion, Articular
4.
Biol Sport ; 40(3): 753-760, 2023 Jul.
Article En | MEDLINE | ID: mdl-37398969

Static stretching (SS) and dynamic stretching (DS) in combination with foam rolling (FR) have been attracting attention as warm-up routines in sports. However, the combined and intervention order effects of SS or DS and FR on flexibility, muscle strength, and jump performance are still unclear. Therefore, this study aimed to compare the combined effects of FR and SS or DS with the various intervention orders (i.e., SS + FR, DS + FR, FR + SS, DS + FR) on the function and properties of the knee extensors. Using a crossover, random allocation design, 17 male university students (21.0 ± 1.1 y) performed four conditions combining FR and SS or DS. The measurement included knee flexion range of motion (ROM), pain pressure threshold (PPT), tissue hardness, maximum voluntary isometric contraction (MVC-ISO), maximum voluntary concentric contraction (MVC-CON) torque, and single-leg countermovement jump (CMJ) height of the knee extensors. All interventions significantly (p < 0.01) increased knee flexion ROM (SS + FR: d = 1.29, DS + FR: d = 0.45, FR + SS: d = 0.95, FR + DS: d = 0.49), and significantly (p < 0.01) decreased tissue hardness (SS + FR: d = -1.11, DS + FR: d = -0.86, FR + SS: d = -1.29, DS + FR: d = -0.65). There were no significant changes in MVC-ISO, MVC-CON, and CMJ height in all conditions, but a near significant, small magnitude (p = 0.056, d = -0.31) decrease of MVC-ISO was observed in the FR + SS condition. Our results showed that all the combinations of SS or DS and FR effectively decreased tissue hardness and increased ROM without decreasing muscle strength. Also, effect sizes indicated the largest increase in ROM and decrease in tissue stiffness after SS + FR without decreasing muscle strength and jump performance.

5.
Healthcare (Basel) ; 11(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36833008

Algometers are commonly used to measure the pain-pressure threshold (PPT) in various tissues, such as muscle, tendons, or fascia. However, to date, it is not clear if the repeated application of a PPT assessment can adjust the pain thresholds of the various muscles. Therefore, the purpose of this study was to investigate the repeated application of PPT tests (20 times) in the elbow flexor, knee extensor, and ankle plantar flexor muscles in both sexes. In total, 30 volunteers (15 females, 15 males) were tested for their PPT using an algometer on the respective muscles in random order. We found no significant difference in the PPT between the sexes. Moreover, there was an increase in the PPT in the elbow flexors and knee extensors, starting with the eighth and ninth assessments (out of 20), respectively, compared to the second assessment. Additionally, there was a tendency to change between the first assessment and all the other assessments. In addition, there was no clinically relevant change for the ankle plantar flexor muscles. Consequently, we can recommend that between two and a maximum of seven PPT assessments should be applied so as not to overestimate the PPT. This is important information for further studies, as well as for clinical applications.

6.
J Strength Cond Res ; 37(2): 322-327, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-35544351

ABSTRACT: Nakamura, M, Konrad, A, Kasahara, K, Yoshida, R, Murakami, Y, Sato, S, Aizawa, K, Koizumi, R, and Wilke, J. The combined effect of static stretching and foam rolling with or without vibration on the range of motion, muscle performance, and tissue hardness of the knee extensor. J Strength Cond Res 37(2): 322-327, 2023-Although the combination of static stretching (SS) and foam rolling (FR) is frequently used for warm-up in sports, the effect of the intervention order is unclear. This study compared mechanical tissue properties, pain sensitivity, and motor function after SS and FR (with and without vibration) performed in different orders. Our randomized, controlled, crossover experiment included 15 healthy male subjects (22.5 ± 3.3 years) who visited the laboratory 5 times (inactive control condition, FR + SS, FR vibration + SS, SS + FR, and SS + FR vibration ) with an interval of ≥48 hours. In each session, subjects completed three 60-second bouts of FR and SS, targeting the anterior thigh. Pressure pain threshold, tissue hardness, knee flexion range of motion (ROM), maximal voluntary isometric (MVC-ISO), and concentric (MVC-CON) torque, as well as countermovement jump height, were determined before and after the intervention. All interventions significantly ( p < 0.01) increased knee flexion ROM ( d = 0.78, d = 0.87, d = 1.39, and d = 0.87, respectively) while decreasing tissue hardness ( d = -1.25, d = -1.09, d = -1.18, and d = -1.24, respectively). However, MVC-ISO torque was significantly reduced only after FR + SS ( p = 0.05, d = -0.59). Our results suggest that SS should be followed by FR when aiming to increase ROM and reduce tissue hardness without concomitant stretch-induced force deficits (MVC-ISO, MVC-CON, and countermovement jump height). Additionally, adding vibration to FR does not seem to affect the magnitude of changes observed in the examined outcomes.


Muscle Stretching Exercises , Muscle, Skeletal , Humans , Male , Hardness , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Vibration , Cross-Over Studies , Young Adult , Adult
7.
J Sports Sci Med ; 21(4): 580-585, 2022 12.
Article En | MEDLINE | ID: mdl-36523900

Foam rolling (FR) and vibration foam rolling (VFR) interventions have received attention as pre-exercise warm-ups because they maintain performance and increase range of motion (ROM). However, the immediate and prolonged effects and the comparisons between FR and VFR interventions are unknown. Therefore, this study was designed to compare the effects of FR and VFR interventions on passive properties of knee extensors over time (up to 30 min after interventions). A crossover, random allocation design was used with 14 male college students (22.1 ± 1.0 years old) in the control, FR, and VFR conditions. The knee flexion ROM, pain pressure threshold (PPT), and tissue hardness were measured before and immediately after, 10, 20, and 30 minutes after the intervention. The results showed that knee flexion ROM increased significantly immediately after the intervention in both the FR and VFR conditions and maintained up to 30 minutes after both conditions. PPT increased significantly (p < 0.01) immediately after the FR intervention. In the VFR condition, there was a significant increase in PPT immediately after the intervention (p < 0.01) and 10 minutes after the intervention (p < 0.05). Tissue hardness was significantly decreased (p < 0.01) immediately after and 10 minutes after the FR intervention. However, tissue hardness in the VFR condition was significantly decreased (p < 0.01) up to 30 minutes after the intervention. The results suggest that FR and VFR interventions increase knee flexion ROM, and the effect lasts at least 30 minutes, but the effects on PPT and tissue hardness are maintained a longer time in the VFR condition compared to the FR condition. Therefore, VFR can be recommended as a warm-up before exercise to change the passive properties of knee extensors.


Knee , Vibration , Humans , Male , Young Adult , Adult , Knee Joint , Range of Motion, Articular , Lower Extremity
8.
J Sports Sci Med ; 21(3): 376-382, 2022 09.
Article En | MEDLINE | ID: mdl-36157391

Vibration foam rolling (VFR) intervention has recently gained attention in sports and rehabilitation settings since the superimposed vibration with foam rolling can affect several physiological systems. However, the sustained effect and a comparison of the effects of different VFR vibration frequencies on flexibility and muscle strength have not been examined. Therefore, in this study, we aimed to investigate the acute and sustained effects of three 60-s sets of VFR with different frequencies on knee flexion range of motion (ROM) and muscle strength of the knee extensors. Using a crossover, random allocation design, 16 male university students (21.2 ± 0.6 years) performed under two conditions: VFR with low (35 Hz) and high (67 Hz) frequencies. The acute and sustained effects (20 min after intervention) of VFR on knee flexion ROM, maximum voluntary isometric contraction (MVC-ISO) torque, maximum voluntary concentric contraction (MVC-CON) torque, rate of force development (RFD), and single-leg countermovement jump (CMJ) height were examined. Our results showed that knee flexion ROM increased significantly (p < 0.01) immediately after the VFR intervention and remained elevated up to 20 min, regardless of the vibration frequency. MVC-ISO and MVC-CON torque both decreased significantly (p < 0.01) immediately after the VFR intervention and remained significantly lowered up to 20 min, regardless of the vibration frequency. However, there were no significant changes in RFD or CMJ height. Our results suggest that VFR can increase knee flexion ROM but induces a decrease in muscle strength up to 20 min after VFR at both high and low frequencies.


Quadriceps Muscle , Vibration , Humans , Isometric Contraction/physiology , Male , Muscle Strength/physiology , Quadriceps Muscle/physiology , Torque
9.
Scand J Med Sci Sports ; 32(11): 1602-1614, 2022 Nov.
Article En | MEDLINE | ID: mdl-35908200

Our previous study found that one maximal voluntary eccentric contraction (MVC-ECC) performed daily for 5 days a week for 4 weeks increased MVC-ECC, isometric (MVC-ISO), and concentric contraction (MVC-CON) torque of the elbow flexors more than 10%. The present study investigated the effects of six maximal voluntary eccentric contractions on the MVC torques and biceps brachii and brachialis muscle thickness (MT). Thirty-six healthy young adults were placed to one of the three groups (N = 12 per group); the 6 × 1 group that performed one set of six contractions once a week, the 6 × 5 group that performed one set of six contractions a day for 5 days a week, and the 30 × 1 group that performed five sets of six contractions a day in a week. The training duration was 4 weeks for all groups, and changes in MVC-ECC, MVC-CON and MVC-ISO torque, and MT before and after the 4-week training were compared among the groups. The 6 × 1 group did not show significant changes in muscle strength and MT. Significant (p < 0.05) increases in MVC-ECC (13.5 ± 11.5%), MVC-ISO (9.3 ± 5.5%), MVC-CON torque (11.1 ± 7.4%) were evident for the 6 × 5 group only, and increases in MT were found for the 6 × 5 (10.4 ± 4.4%) and 30 × 1 (8.0 ± 5.8%) groups without a significant difference. These results suggest that performing a small number of eccentric contractions 5 days a week is more effective for increasing muscle strength than performing a larger volume of eccentric contractions once a week. However, it appears that training volume is a factor for muscle hypertrophy in a short-term training.


Isometric Contraction , Muscle Strength , Arm/physiology , Humans , Muscle Strength/physiology , Muscle, Skeletal/physiology , Torque , Young Adult
10.
Eur J Appl Physiol ; 122(9): 2061-2070, 2022 Sep.
Article En | MEDLINE | ID: mdl-35704122

PURPOSE: The chronic effects of unilateral foam rolling (FR) or FR with vibration (VFR) intervention on the rolling and non-rolling sides (cross-education effects) are still unclear. Thus, this study aimed to investigate the effects of unilateral 6-week FR or VFR intervention on ankle dorsiflexion range of motion (DF ROM), muscle stiffness, and muscle strength in both rolling and non-rolling sides. METHODS: Thirty healthy young men were randomly allocated into the FR (n = 15) or the VFR intervention group (n = 15). Participants performed three sets of unilateral FR or VFR interventions for 60 s of the calf muscles twice/week, for 6 weeks. DF ROM, gastrocnemius muscle stiffness, and maximal voluntary isometric contraction (MVIC) torque were assessed in the rolling and non-rolling sides before and after the intervention. RESULTS: The DF ROM increased significantly (p < 0.05) to the same extent in the FR and VFR intervention groups on both rolling (FR: d = 0.58, VFR: d = 0.63) and non-rolling (FR: d = 0.39, VFR: d = 0.50) sides. Similarly, the passive torque at DF ROM increased significantly (p < 0.05) to the same extent in the FR and VFR intervention groups on both rolling (FR: d = 0.85, VFR: d = 0.77) and non-rolling (FR: d = 0.76, VFR: d = 0.68) sides. However, there were no significant changes in muscle stiffness and MVIC after FR and VFR interventions on both the rolling and non-rolling sides. FR and VFR interventions could increase the ROM in both the rolling and non-rolling sides but could not change muscle stiffness and strength. CONCLUSIONS: The results showed that it is not necessarily needed to perform VFR to increase ROM in the long term.


Muscle Strength , Vibration , Humans , Male , Muscle, Skeletal/physiology , Range of Motion, Articular/physiology , Torque , Vibration/therapeutic use
...