Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592854

RESUMEN

Due to the increasing presence of industrial hemp (Cannabis sativa L.) and its multiple possibilities of use, the influence of different light and several biopreparations based on beneficial fungi and bacteria on hemp's morphological and physiological properties were examined. Different biopreparations and their combinations were inoculated on hemp seed and/or substrate and grown under blue and white light. A completely randomized block design was conducted in four replications within 30 days. For biopreparation treatment, vesicular arbuscular mycorrhiza (VAM) in combination with Azotobacter chroococum and Trichoderma spp. were inoculated only on seed or both on seed and in the substrate. Generally, the highest morphological parameters (stem, root and plant length) were recorded on plants in white light and on treatment with applied Trichoderma spp., both on seed and substrate. Blue light negatively affected biopreparation treatments, resulting in lower values of all morphological parameters compared to control. Leaves pigments were higher under blue light, as compared to the white light. At the same time, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), flavonoids, total flavanol content and phenolic acids were not influenced by light type. Biopreparation treatments did not significantly influence the leaves' pigments content (Chl a, Chl b and Car), nor the phenolic and flavanol content.

2.
Sci Rep ; 12(1): 12078, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35840697

RESUMEN

Glioblastoma is one of the most aggressive types of cancer with success of therapy being hampered by the existence of treatment resistant populations of stem-like Tumour Initiating Cells (TICs) and poor blood-brain barrier drug penetration. Therapies capable of effectively targeting the TIC population are in high demand. Here, we synthesize spherical diketopyrrolopyrrole-based Conjugated Polymer Nanoparticles (CPNs) with an average diameter of 109 nm. CPNs were designed to include fluorescein-conjugated Hyaluronic Acid (HA), a ligand for the CD44 receptor present on one population of TICs. We demonstrate blood-brain barrier permeability of this system and concentration and cell cycle phase-dependent selective uptake of HA-CPNs in CD44 positive GBM-patient derived cultures. Interestingly, we found that uptake alone regulated the levels and signaling activity of the CD44 receptor, decreasing stemness, invasive properties and proliferation of the CD44-TIC populations in vitro and in a patient-derived xenograft zebrafish model. This work proposes a novel, CPN- based, and surface moiety-driven selective way of targeting of TIC populations in brain cancer.


Asunto(s)
Glioblastoma , Nanopartículas , Animales , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/patología , Humanos , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/farmacología , Polímeros/farmacología , Pez Cebra/metabolismo
3.
Chem Soc Rev ; 50(14): 8279-8318, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34085067

RESUMEN

Mechanochemistry by milling, grinding, extrusion or other types of shear and mechanical agitation has shown novel reactivity for a wide range of reactions, not seen in traditional solution-based environments. While the area has been extensively investigated and reviewed in the context of organic and solid-state supramolecular chemistry, less attention has been given to the recent advances in the context of inorganic transformations. Here we provide a perspective of inorganic mechanochemical reactions, focusing on transformations that are based on transfer of charged species: exchange of ions and electrons (redox reactions). These types of mechanochemical transformations typically lead to the formation of new nanoparticles and organometallic complexes. Herein, we provide an overview of mechanochemical reactivity that complements the recent developments in organic synthesis and catalysis.

4.
Arh Hig Rada Toksikol ; 71(2): 130-137, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975099

RESUMEN

Garlic is a valuable source material for medicines due to its known antitumor, hypolipidaemic, antioxidant, and immunomodulatory effects. This study compares the protective effects of conventionally grown (CG) and in vitro propagated garlic (PG) against hydrogen peroxide-induced cytotoxicity in HepG2 cells and their antioxidant activity. Garlic used in this study was obtained by planting garlic cloves or by planting the transplants of PG directly in the field. At the end of the vegetation period, CG and PG were sampled and extracts prepared for the experiment. Compared to conventionally grown garlic bulbs, PG leafy part yielded significantly higher content of polyphenols, flavonoids and alliin, and also showed equal or higher antioxidant activity, measured by the cell viability test, GSH and ROS level. Moreover, PG can be produced in less time (shorter vegetation period) and with significantly less material (cloves). Significantly higher content of alliin, polyphenols, and flavonoids and significantly higher yield of plant biomass in PG has a great potential to become a new production model with improved garlic properties as a medicine material.


Asunto(s)
Carcinoma Hepatocelular , Ajo , Neoplasias Hepáticas , Antioxidantes/farmacología , Humanos , Peróxido de Hidrógeno/toxicidad , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...