Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Mol Diagn ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032820

RESUMEN

Prenatal diagnostic testing of amniotic fluid, chorionic villi, or more rarely, fetal cord blood is recommended following a positive or unreportable noninvasive cell-free fetal DNA test, abnormal maternal biochemical serum screen, abnormal ultrasound, or increased genetic risk for a cytogenomic abnormality based on family history. Although chromosomal microarray is recommended as the first-tier prenatal diagnostic test, in practice, multiple assays are often assessed in concert to achieve a final diagnostic result. The use of multiple methodologies is costly, time consuming, and labor intensive. Optical genome mapping (OGM) is an emerging technique with application for prenatal diagnosis because of its ability to detect and resolve, in a single assay, all classes of pathogenic cytogenomic aberrations. In an effort to characterize the potential of OGM as a novel alternative to traditional standard of care (SOC) testing of prenatal samples, OGM was performed on a total of 200 samples representing 123 unique cases, which were previously tested with SOC methods (92/123 = 74.7% cases tested with at least two SOCs). OGM demonstrated an overall accuracy of 99.6% when compared with SOC methods, a positive predictive value of 100%, and 100% reproducibility between sites, operators, and instruments. The standardized workflow, cost-effectiveness, and high-resolution cytogenomic analysis demonstrate the potential of OGM to serve as a first-tier test for prenatal diagnosis.

2.
Am J Clin Pathol ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39078096

RESUMEN

OBJECTIVES: To describe mismatch repair (MMR) and microsatellite instability (MSI) testing practices in laboratories using the College of American Pathologists (CAP) MSI/MMR proficiency testing programs prior to the 2022 publication of the MSI/MMR practice guidelines copublished by CAP and the Association of Molecular Pathology (AMP). METHODS: Data from supplemental questionnaires provided with the 2020-B MSI/MMR programs to 542 laboratories across different practice settings were reviewed. Questionnaires contained 21 questions regarding the type of testing performed, specimen/tumor types used for testing, and clinical practices for checkpoint blockade therapy. RESULTS: Domestic laboratories test for MSI/MMR more often than international laboratories (P = .04) and academic hospitals/medical centers test more frequently than nonhospital sites/clinics (P = .03). The most commonly used testing modality is immunohistochemistry, followed by polymerase chain reaction, then next-generation sequencing. Most laboratories (72.6%; 347/478) reported awareness of the use of immune checkpoint inhibitor therapy for patients with high MSI or MMR-deficient results. CONCLUSIONS: The results demonstrate the state of MMR and MSI testing in laboratories prior to the publication of the CAP/AMP best practice guidelines, highlighting differences between various laboratory types. The findings indicate the importance of consensus guidelines and provide a baseline for comparison after their implementation.

3.
Leuk Lymphoma ; : 1-10, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967518

RESUMEN

This study investigates COVID-19 outcomes and immune response in chronic myeloid leukemia (CML) patients post-SARS-CoV-2 vaccination, comparing effectiveness of various vaccine options. Data from 118 CML patients (85 in Brazil, 33 in the US) showed similar infection rates prior (14% Brazil, 9.1% US) and post-vaccination (24.7% vs. 27.3%, respectively). In Brazil, AstraZeneca and CoronaVac were the most commonly used vaccine brands, while in the US, Moderna and Pfizer-BioNTech vaccines dominated. Despite lower seroconversion in the Brazilian cohort, all five vaccine brands analyzed prevented severe COVID-19. Patients who received mRNA and recombinant viral vector vaccines (HR: 2.20; 95%CI 1.07-4.51; p < .031) and those that had achieved at least major molecular response (HR: 1.51; 95% CI 1.01-3.31; p < .0001) showed higher seroconversion rates. Our findings suggest that CML patients can generate antibody responses regardless of the vaccine brand, thereby mitigating severe COVID-19. This effect is more pronounced in patients with well-controlled disease.

4.
Viruses ; 16(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38932146

RESUMEN

The novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the most significant global health crises in recent history. The clinical characteristics of COVID-19 patients have revealed the possibility of immune activity changes contributing to disease severity. Nevertheless, limited information is available regarding the immune response in human lung tissue, which is the primary site of infection. In this study, we conducted an extensive analysis of lung tissue to screen for differentially expressed miRNAs and mRNAs in five individuals who died due to COVID-19 and underwent a rapid autopsy, as well as seven control individuals who died of other causes unrelated to COVID-19. To analyze the host response gene expression, miRNA microarray and Nanostring's nCounter XT gene expression assay were performed. Our study identified 37 downregulated and 77 upregulated miRNAs in COVID-19 lung biopsy samples compared to the controls. A total of 653 mRNA transcripts were differentially expressed between the two sample types, with most transcripts (472) being downregulated in COVID-19-positive specimens. Hierarchical and PCA K-means clustering analysis showed distinct clustering between COVID-19 and control samples. Enrichment and network analyses revealed differentially expressed genes important for innate immunity and inflammatory response in COVID-19 lung biopsies. The interferon-signaling pathway was highly upregulated in COVID-19 specimens while genes involved in interleukin-17 signaling were downregulated. These findings shed light on the mechanisms of host cellular responses to COVID-19 infection in lung tissues and could help identify new targets for the prevention and treatment of COVID-19 infection.


Asunto(s)
Autopsia , COVID-19 , Redes Reguladoras de Genes , Pulmón , MicroARNs , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/virología , COVID-19/inmunología , Pulmón/virología , Pulmón/patología , MicroARNs/genética , MicroARNs/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Perfilación de la Expresión Génica , ARN Mensajero/genética , Adulto
5.
Geroscience ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733547

RESUMEN

Traumatic brain injury (TBI) is one of the foremost causes of disability and mortality globally. While the scientific and medical emphasis is to save lives and avoid disability during acute period of injury, a severe health problem can manifest years after injury. For instance, TBI increases the risk of cognitive impairment in the elderly. Remote TBI history was reported to be a cause of the accelerated clinical trajectory of Alzheimer's disease-related dementia (ADRD) resulting in earlier onset of cognitive impairment and increased AD-associated pathological markers like greater amyloid deposition and cortical thinning. It is not well understood whether a single TBI event may increase the risk of dementia. Moreover, the cellular signaling pathways remain elusive for the chronic effects of TBI on cognition. We have hypothesized that a single TBI induces sustained neuroinflammation and disrupts cellular communication in a way that results later in ADRD pathology. To test this, we induced TBI in young adult CD1 mice and assessed the behavioral outcomes after 11 months followed by pathological, histological, transcriptomic, and MRI assessment. On MRI scans, these mice showed significant loss of tissue, reduced CBF, and higher white matter injury compared to sham mice. We found these brains showed progressive atrophy, markers of ADRD, sustained astrogliosis, loss of neuronal plasticity, and growth factors even after 1-year post-TBI. Because of progressive neurodegeneration, these mice had motor deficits, showed cognitive impairments, and wandered randomly in open field. We, therefore, conclude that progressive pathology after adulthood TBI leads to neurodegenerative conditions such as ADRD and impairs neuronal functions.

6.
Int J Tryptophan Res ; 17: 11786469241246674, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38757095

RESUMEN

Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.

7.
Genes (Basel) ; 15(4)2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38674331

RESUMEN

Copy number alterations (CNAs) are significant in tumor initiation and progression. Identifying these aberrations is crucial for targeted therapies and personalized cancer diagnostics. Next-generation sequencing (NGS) methods present advantages in scalability and cost-effectiveness, surpassing limitations associated with reference assemblies and probe capacities in traditional laboratory approaches. This retrospective study evaluated CNAs in 50 FFPE tumor samples (breast cancer, ovarian carcinoma, pancreatic cancer, melanoma, and prostate carcinoma) using Illumina's TruSight Oncology 500 (TSO500) and the Affymetrix Oncoscan Molecular Inversion Probe (OS-MIP) (ThermoFisher Scientific, Waltham, MA, USA). NGS analysis with the NxClinical 6.2 software demonstrated a high sensitivity and specificity (100%) for CNA detection, with a complete concordance rate as compared to the OS-MIP. All 54 known CNAs were identified by NGS, with gains being the most prevalent (63%). Notable CNAs were observed in MYC (18%), TP53 (12%), BRAF (8%), PIK3CA, EGFR, and FGFR1 (6%) genes. The diagnostic parameters exhibited high accuracy, including a positive predictive value, negative predictive value, and overall diagnostic accuracy. This study underscores NxClinical as a reliable software for identifying clinically relevant gene alterations using NGS TSO500, offering valuable insights for personalized cancer treatment strategies based on CNA analysis.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias , Programas Informáticos , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Femenino , Masculino , Neoplasias/genética , Estudios Retrospectivos
8.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38339232

RESUMEN

Colorectal cancer (CRC) is one of the most heterogeneous and deadly diseases, with a global incidence of 1.5 million cases per year. Genomics has revolutionized the clinical management of CRC by enabling comprehensive molecular profiling of cancer. However, a deeper understanding of the molecular factors is needed to identify new prognostic and predictive markers that can assist in designing more effective therapeutic regimens for the improved management of CRC. Recent breakthroughs in single-cell analysis have identified new cell subtypes that play a critical role in tumor progression and could serve as potential therapeutic targets. Spatial analysis of the transcriptome and proteome holds the key to unlocking pathogenic cellular interactions, while liquid biopsy profiling of molecular variables from serum holds great potential for monitoring therapy resistance. Furthermore, gene expression signatures from various pathways have emerged as promising prognostic indicators in colorectal cancer and have the potential to enhance the development of equitable medicine. The advancement of these technologies for identifying new markers, particularly in the domain of predictive and personalized medicine, has the potential to improve the management of patients with CRC. Further investigations utilizing similar methods could uncover molecular subtypes specific to emerging therapies, potentially strengthening the development of personalized medicine for CRC patients.

9.
Genet Med ; 26(4): 101070, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38376505

RESUMEN

Clinical cytogenomic studies of solid tumor samples are critical to the diagnosis, prognostication, and treatment selection for cancer patients. An overview of current cytogenomic techniques for solid tumor analysis is provided, including standards for sample preparation, clinical and technical considerations, and documentation of results. With the evolving technologies and their application in solid tumor analysis, these standards now include sequencing technology and optical genome mapping, in addition to the conventional cytogenomic methods, such as G-banded chromosome analysis, fluorescence in situ hybridization, and chromosomal microarray analysis. This updated Section E6.7-6.12 supersedes the previous Section E6.5-6.8 in Section E: Clinical Cytogenetics of the American College of Medical Genetics and Genomics Standards for Clinical Genetics Laboratories.


Asunto(s)
Genética Médica , Neoplasias , Humanos , Estados Unidos , Laboratorios , Hibridación Fluorescente in Situ/métodos , Aberraciones Cromosómicas , Neoplasias/diagnóstico , Neoplasias/genética , Cromosomas , Genómica
10.
J Mol Diagn ; 26(3): 213-226, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38211722

RESUMEN

Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).


Asunto(s)
Estudios Prospectivos , Humanos , Mapeo Cromosómico , Estudios Retrospectivos , Recién Nacido
11.
Neurobiol Dis ; 191: 106404, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184014

RESUMEN

Aging is a major risk factor for multiple chronic disorders in the elderly population, including Alzheimer's disease (AD) and Osteoporosis. AD is a progressive neurodegenerative disease characterized by memory loss. In addition to dementia, several studies have shown that AD patients experience an increased rate of musculoskeletal co-morbidities, such as osteoporosis. Since tissue-specific macrophages contribute to both diseases, this study analyzed the microglia transcriptome of AD mice to determine a common gene signature involved in osteoclast biology. After comparing differentially regulated genes from GEO data sets (GSE93824 and GSE212277), there were 35 common upregulated genes and 89 common downregulated genes. Of these common genes, seven genes are known to play an important role in bone homeostasis. CSF1, SPP1, FAM20C, and Cst7 were upregulated and are associated with osteoclastogenesis and inflammation. Among the downregulated genes, LILRA6, MMP9, and COL18A1 are involved in bone formation and osteoclast regulation. We further validated some of these genes (CSF1, Cst7, and SPP1) in the cortex and the bone of AD mice models. The dysregulation of these microglial genes in AD might provide insights into the co-occurrence of AD and osteoporosis and offer potential therapeutic targets to combat disease progression.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Osteoporosis , Anciano , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Transcriptoma , Microglía , Osteoporosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular
12.
Am J Hematol ; 99(4): 642-661, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38164980

RESUMEN

Optical Genome Mapping (OGM) is rapidly emerging as an exciting cytogenomic technology both for research and clinical purposes. In the last 2 years alone, multiple studies have demonstrated that OGM not only matches the diagnostic scope of conventional standard of care cytogenomic clinical testing but it also adds significant new information in certain cases. Since OGM consolidates the diagnostic benefits of multiple costly and laborious tests (e.g., karyotyping, fluorescence in situ hybridization, and chromosomal microarrays) in a single cost-effective assay, many clinical laboratories have started to consider utilizing OGM. In 2021, an international working group of early adopters of OGM who are experienced with routine clinical cytogenomic testing in patients with hematological neoplasms formed a consortium (International Consortium for OGM in Hematologic Malignancies, henceforth "the Consortium") to create a consensus framework for implementation of OGM in a clinical setting. The focus of the Consortium is to provide guidance for laboratories implementing OGM in three specific areas: validation, quality control and analysis and interpretation of variants. Since OGM is a complex technology with many variables, we felt that by consolidating our collective experience, we could provide a practical and useful tool for uniform implementation of OGM in hematologic malignancies with the ultimate goal of achieving globally accepted standards.


Asunto(s)
Neoplasias Hematológicas , Humanos , Hibridación Fluorescente in Situ , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Cariotipificación , Mapeo Cromosómico
13.
Biomedicines ; 11(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38137484

RESUMEN

Structural variations (SVs) play a key role in the pathogenicity of hematological malignancies. Standard-of-care (SOC) methods such as karyotyping and fluorescence in situ hybridization (FISH), which have been employed globally for the past three decades, have significant limitations in terms of resolution and the number of recurrent aberrations that can be simultaneously assessed, respectively. Next-generation sequencing (NGS)-based technologies are now widely used to detect clinically significant sequence variants but are limited in their ability to accurately detect SVs. Optical genome mapping (OGM) is an emerging technology enabling the genome-wide detection of all classes of SVs at a significantly higher resolution than karyotyping and FISH. OGM requires neither cultured cells nor amplification of DNA, addressing the limitations of culture and amplification biases. This study reports the clinical validation of OGM as a laboratory-developed test (LDT) according to stringent regulatory (CAP/CLIA) guidelines for genome-wide SV detection in different hematological malignancies. In total, 60 cases with hematological malignancies (of various subtypes), 18 controls, and 2 cancer cell lines were used for this study. Ultra-high-molecular-weight DNA was extracted from the samples, fluorescently labeled, and run on the Bionano Saphyr system. A total of 215 datasets, Inc.luding replicates, were generated, and analyzed successfully. Sample data were then analyzed using either disease-specific or pan-cancer-specific BED files to prioritize calls that are known to be diagnostically or prognostically relevant. Sensitivity, specificity, and reproducibility were 100%, 100%, and 96%, respectively. Following the validation, 14 cases and 10 controls were run and analyzed using OGM at three outside laboratories showing reproducibility of 96.4%. OGM found more clinically relevant SVs compared to SOC testing due to its ability to detect all classes of SVs at higher resolution. The results of this validation study demonstrate the superiority of OGM over traditional SOC methods for the detection of SVs for the accurate diagnosis of various hematological malignancies.

15.
Curr Protoc ; 3(10): e910, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37888957

RESUMEN

Optical genome mapping (OGM) is a next-generation cytogenomic technology that has the potential to replace standard-of-care technologies used in the genetic workup of various malignancies. The ability to detect various classes of structural variations that include copy number variations, deletions, duplications, balanced and unbalanced events (insertions, inversions, and translocation) and complex genomic rearrangements in a single assay and analysis demonstrates the utility of the technology in tumor research and clinical application. Herein, we provide the methodological details for performing OGM and pre- and post-analytical quality control (QC) checks and describe critical steps that should be performed with caution, probable causes for specific QC failures, and potential method modifications that could be implemented as part of troubleshooting. The protocol description and troubleshooting guide should help new and current users of the technology to improve or troubleshoot the problems (if any) in their workflow. © 2023 Wiley Periodicals LLC. Basic Protocol: Optical genome mapping.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Genoma , Genómica/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Mapeo Cromosómico
16.
Hematol Rep ; 15(4): 592-596, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873796

RESUMEN

Mantle cell lymphoma (MCL) is an intermediate-grade B-cell lymphoma, representing 2.8% of all non-Hodgkin lymphomas in the US. It is associated with t(11;14)(q13; q23), which leads to the overexpression of cyclin D1, consequently promoting cell proliferation. MCL usually expresses CD19, CD20, CD43, surface immunoglobulins, FMC7, BCL2, cyclin D1, CD5, and SOX11. Herein is a case of a 67-year-old male, referred to our facility with shortness of breath, anemia (hemoglobin of 5.3 g/dL), thrombocytopenia (12 × 109/L), and leukocytosis (283 × 109/L). A peripheral blood smear showed marked lymphocytosis with blastoid morphology. Morphologic examination of the bone marrow biopsy revealed a diffuse sheet of blastoid cells expressing CD20 and CD10, but without CD5 or cyclin D1. Given these features, a differential diagnosis of diffuse large B-cell lymphoma (DLBCL) with germinal center derivation, high-grade follicular lymphoma, and Burkitt lymphoma was considered, with the latter not favored due to morphology. Additional studies revealed positive SOX11, and fluorescence in situ hybridization (FISH) studies detected t(11;14). These additional studies supported diagnosis of the blastoid variant of MCL. In conclusion, we present a unique and challenging case of MCL without cyclin D1 or CD5, but with an expression of CD10 and SOX11, along with t(11;14). Pathologists should explicitly consider the blastoid variant of MCL when dealing with mature B-cell neoplasms with blastoid morphology in adults, and utilize a broad panel of ancillary studies, including FISH and SOX11.

17.
Genes (Basel) ; 14(9)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761823

RESUMEN

Homologous recombination deficiency (HRD) is characterized by the inability of a cell to repair the double-stranded breaks using the homologous recombination repair (HRR) pathway. The deficiency of the HRR pathway results in defective DNA repair, leading to genomic instability and tumorigenesis. The presence of HRD has been found to make tumors sensitive to ICL-inducing platinum-based therapies and poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) inhibitors (PARPi). However, there are no standardized methods to measure and report HRD phenotypes. Herein, we compare optical genome mapping (OGM), chromosomal microarray (CMA), and a 523-gene NGS panel for HRD score calculations. This retrospective study included the analysis of 196 samples, of which 10 were gliomas, 176 were hematological malignancy samples, and 10 were controls. The 10 gliomas were evaluated with both CMA and OGM, and 30 hematological malignancy samples were evaluated with both the NGS panel and OGM. To verify the scores in a larger cohort, 135 cases were evaluated with the NGS panel and 71 cases with OGM. The HRD scores were calculated using a combination of three HRD signatures that included loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale transitions (LST). In the ten glioma cases analyzed with OGM and CMA using the same DNA (to remove any tumor percentage bias), the HRD scores (mean ± SEM) were 13.2 (±4.2) with OGM compared to 3.7 (±1.4) with CMA. In the 30 hematological malignancy cases analyzed with OGM and the 523-gene NGS panel, the HRD scores were 7.6 (±2.2) with OGM compared to 2.6 (±0.8) with the 523-gene NGS panel. OGM detected 70.8% and 66.8% of additional variants that are considered HRD signatures in gliomas and hematological malignancies, respectively. The higher sensitivity of OGM to capture HRD signature variants might enable a more accurate and precise correlation with response to PARPi and platinum-based drugs. This study reveals HRD signatures that are cryptic to current standard of care (SOC) methods used for assessing the HRD phenotype and presents OGM as an attractive alternative with higher resolution and sensitivity to accurately assess the HRD phenotype.


Asunto(s)
Glioma , Neoplasias Hematológicas , Humanos , Estudios Retrospectivos , Glioma/genética , Pentosiltransferasa , Poli(ADP-Ribosa) Polimerasas , Recombinación Homóloga , Mapeo Cromosómico
18.
J Med Virol ; 95(9): e29067, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37675796

RESUMEN

The COVID-19 pandemic had a profound impact on global health, but rapid vaccine administration resulted in a significant decline in morbidity and mortality rates worldwide. In this study, we sought to explore the temporal changes in the humoral immune response against SARS-CoV-2 healthcare workers (HCWs) in Augusta, GA, USA, and investigate any potential associations with ethno-demographic features. Specifically, we aimed to compare the naturally infected individuals with naïve individuals to understand the immune response dynamics after SARS-CoV-2 vaccination. A total of 290 HCWs were included and assessed prospectively in this study. COVID status was determined using a saliva-based COVID assay. Neutralizing antibody (NAb) levels were quantified using a chemiluminescent immunoassay system, and IgG levels were measured using an enzyme-linked immunosorbent assay method. We examined the changes in antibody levels among participants using different statistical tests including logistic regression and multiple correspondence analysis. Our findings revealed a significant decline in NAb and IgG levels at 8-12 months postvaccination. Furthermore, a multivariable analysis indicated that this decline was more pronounced in White HCWs (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.07-4.08, p = 0.02) and IgG (OR = 2.07, 95% CI = 1.04-4.11, p = 0.03) among the whole cohort. Booster doses significantly increased IgG and NAb levels, while a decline in antibody levels was observed in participants without booster doses at 12 months postvaccination. Our results highlight the importance of understanding the dynamics of immune response and the potential influence of demographic factors on waning immunity to SARS-CoV-2. In addition, our findings emphasize the value of booster doses to ensure durable immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Anticuerpos Neutralizantes , Personal de Salud , Inmunoglobulina G
19.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37370824

RESUMEN

The standard-of-care (SOC) for genomic testing of myeloid cancers primarily relies on karyotyping/fluorescent in situ hybridization (FISH) (cytogenetic analysis) and targeted gene panels (usually ≤54 genes) that harbor hotspot pathogenic variants (molecular genetic analysis). Despite this combinatorial approach, ~50% of myeloid cancer genomes remain cytogenetically normal, and the limited sequencing variant profiles obtained from targeted panels are unable to resolve the molecular etiology of many myeloid tumors. In this study, we evaluated the performance and clinical utility of combinatorial use of optical genome mapping (OGM) and a 523-gene next-generation sequencing (NGS) panel for comprehensive genomic profiling of 30 myeloid tumors and compared it to SOC cytogenetic methods (karyotyping and FISH) and a 54-gene NGS panel. OGM and the 523-gene NGS panel had an analytical concordance of 100% with karyotyping, FISH, and the 54-gene panel, respectively. Importantly, the IPSS-R cytogenetic risk group changed from very good/good to very poor in 22% of MDS (2/9) cases based on comprehensive profiling (karyotyping, FISH, and 54-gene panel vs. OGM and 523-gene panel), while additionally identifying six compound heterozygous events of potential clinical relevance in six cases (6/30, 20%). This cost-effective approach of using OGM and a 523-gene NGS panel for comprehensive genomic profiling of myeloid cancers demonstrated increased yield of actionable targets that can potentially result in improved clinical outcomes.

20.
Br Dent J ; 234(8): 593-600, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117367

RESUMEN

Introduction The purpose of this study was to test the short-term efficacy of four commercial mouthwashes versus water in reducing SARS-CoV-2 viral load in the oral cavity over clinically relevant time points.Methods In total, 32 subjects that were proven SARS-CoV-2-positive via polymerase chain reaction (PCR)-based diagnostic test were recruited and randomised into five parallel arms. Cycle threshold (Ct) values were compared in saliva samples between the groups, as well as within the groups at baseline (pre-rinse), zero hours, one hour and two hours post-rinse, using SARS-CoV-2 reverse transcription-PCR analysis.Results We observed a significant increase in Ct values in saliva samples collected immediately after rinsing with all the four mouthwashes - 0.12% chlorhexidine gluconate, 1.5% hydrogen peroxide, 1% povidone iodine, or Listerine - compared to water. A sustained increase in Ct values for up to two hours was only observed in the Listerine and chlorohexidine gluconate groups. We were not able to sufficiently power this clinical trial, so the results remain notional but encouraging and supportive of findings in other emerging mouthwash studies on COVID-19, warranting additional investigations.Conclusions Our evidence suggests that in a clinical setting, prophylactic rinses with Listerine or chlorhexidine gluconate can potentially reduce SARS-CoV-2 viral load in the oral cavity for up to two hours. While limited in statistical power due to the difficulty in obtaining this data, we advocate for pre-procedural mouthwashing, like handwashing, as an economical and safe additional precaution to help mitigate the transmission of SARS-CoV-2 from a potentially infected patient to providers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antisépticos Bucales/uso terapéutico , COVID-19/prevención & control , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA