Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Phys Rev Lett ; 127(17): 173606, 2021 Oct 22.
Article En | MEDLINE | ID: mdl-34739289

We develop an approach to describe the Dicke transition of interacting many-particle systems strongly coupled to the light of a lossy cavity. A mean-field approach is combined with a perturbative treatment of fluctuations beyond mean field, which becomes exact in the thermodynamic limit. These fluctuations completely change the nature of the steady state, determine the thermal character of the transition, and lead to universal properties of the emerging self-organized states. We validate our results by comparing them with time-dependent matrix-product-state calculations.

2.
Phys Rev Lett ; 125(9): 093604, 2020 Aug 28.
Article En | MEDLINE | ID: mdl-32915618

We investigate the full quantum evolution of ultracold interacting bosonic atoms on a chain and coupled to an optical cavity. Extending the time-dependent matrix product state techniques and the many-body adiabatic elimination technique to capture the global coupling to the cavity mode and the open nature of the cavity, we examine the long time behavior of the system beyond the mean-field elimination of the cavity field. We investigate the many-body steady states and the self-organization transition for a wide range of parameters. We show that in the self-organized phase the steady state consists in a mixture of the mean-field predicted density wave states and excited states with additional defects. In particular, for large dissipation strengths a steady state with a fully mixed atomic sector is obtained crucially different from the predicted mean-field state.

3.
Phys Rev Lett ; 122(4): 040402, 2019 Feb 01.
Article En | MEDLINE | ID: mdl-30768301

An isolated quantum gas with a localized loss features a nonmonotonic behavior of the particle loss rate as an incarnation of the quantum Zeno effect, as recently shown in experiments with cold atomic gases. While this effect can be understood in terms of local, microscopic physics, we show that novel many-body effects emerge when nonlinear gapless quantum fluctuations become important. To this end, we investigate the effect of a local dissipative impurity on a one-dimensional gas of interacting fermions. We show that the escape probability for modes close to the Fermi energy vanishes for an arbitrary strength of the dissipation. In addition, transport properties across the impurity are qualitatively modified, similarly to the Kane-Fisher barrier problem. We substantiate these findings using both a microscopic model of spinless fermions and a Luttinger liquid description.

4.
Phys Rev Lett ; 120(2): 020401, 2018 Jan 12.
Article En | MEDLINE | ID: mdl-29376696

We analyze the propagation of correlations after a sudden interaction change in a strongly interacting quantum system in contact with an environment. In particular, we consider an interaction quench in the Bose-Hubbard model, deep within the Mott-insulating phase, under the effect of dephasing. We observe that dissipation effectively speeds up the propagation of single-particle correlations while reducing their coherence. In contrast, for two-point density correlations, the initial ballistic propagation regime gives way to diffusion at intermediate times. Numerical simulations, based on a time-dependent matrix product state algorithm, are supplemented by a quantitatively accurate fermionic quasiparticle approach providing an intuitive description of the initial dynamics in terms of holon and doublon excitations.

5.
Phys Rev Lett ; 119(23): 230403, 2017 Dec 08.
Article En | MEDLINE | ID: mdl-29286701

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidence, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions signaling the presence of the bond order wave phase. This scheme also provides insights into the excitation spectra of both the band and Mott insulators.

6.
Phys Rev Lett ; 116(6): 060401, 2016 Feb 12.
Article En | MEDLINE | ID: mdl-26918972

We propose how a fermionic quantum gas confined to an optical lattice and coupled to an optical cavity can self-organize into a state where the spontaneously emerging cavity field amplitude induces an artificial magnetic field. The fermions form either a chiral insulator or a chiral liquid carrying chiral currents. The feedback mechanism via the dynamical cavity field enables robust and fast switching in time of the chiral phases, and the cavity output can be employed for a direct nondestructive measurement of the chiral current.

7.
Phys Rev Lett ; 114(17): 170401, 2015 May 01.
Article En | MEDLINE | ID: mdl-25978211

We use two-time correlation functions to study the complex dynamics of dissipative many-body quantum systems. In order to measure, understand, and categorize these correlations we extend the framework of the adiabatic elimination method. We show that, for the same parameters and times, two-time correlations can display two distinct behaviors depending on the observable considered: a fast exponential decay or a much slower dynamics. We exemplify these findings by studying strongly interacting bosons in a double well subjected to phase noise. While the single-particle correlations decay exponentially fast with time, the density-density correlations display slow aging dynamics. We also show that this slow relaxation regime is robust against particle losses. Additionally, we use the developed framework to show that the dynamic properties of dissipatively engineered states can be drastically different from their Hamiltonian counterparts.

8.
Phys Rev Lett ; 112(6): 065301, 2014 Feb 14.
Article En | MEDLINE | ID: mdl-24580691

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson criterion. At long times, in this intermediate regime, bosonization predicts that single-particle correlations decay following a stretched exponential, an unconventional behavior. We develop here an intuitive understanding for the propagation of correlations, in terms of a generalized light cone, applicable to a large variety of systems and quench forms.

9.
Phys Rev Lett ; 111(19): 195301, 2013 Nov 08.
Article En | MEDLINE | ID: mdl-24266477

We study the dynamics of a strongly interacting bosonic quantum gas in an optical lattice potential under the effect of a dissipative environment. We show that the interplay between the dissipative process and the Hamiltonian evolution leads to an unconventional dynamical behavior of local number fluctuations. In particular, we show, both analytically and numerically, the emergence of an anomalous diffusive evolution in configuration space at short times and, at long times, an unconventional dynamics dominated by rare events. Such rare events, common in disordered and frustrated systems, are due here to strong interactions. This complex two-stage dynamics reveals information on the level structure of the strongly interacting gas.

10.
Science ; 342(6159): 713-5, 2013 Nov 08.
Article En | MEDLINE | ID: mdl-24158905

Thermoelectric effects, such as the generation of a particle current by a temperature gradient, have their origin in a reversible coupling between heat and particle flows. These effects are fundamental probes for materials and have applications to cooling and power generation. Here, we demonstrate thermoelectricity in a fermionic cold atoms channel in the ballistic and diffusive regimes, connected to two reservoirs. We show that the magnitude of the effect and the efficiency of energy conversion can be optimized by controlling the geometry or disorder strength. Our observations are in quantitative agreement with a theoretical model based on the Landauer-Büttiker formalism. Our device provides a controllable model system to explore mechanisms of energy conversion and realizes a cold atom-based heat engine.

11.
Phys Rev Lett ; 109(4): 045302, 2012 Jul 27.
Article En | MEDLINE | ID: mdl-23006095

We study how the interplay of dissipation and interactions affects the dynamics of a bosonic many-body quantum system. In the presence of both dissipation and strongly repulsive interactions, observables such as the coherence and the density fluctuations display three dynamical regimes: an initial exponential variation followed by a power-law regime, and finally a slow exponential convergence to their asymptotic values. These very long-time scales arise as dissipation forces the population of states disfavored by interactions. The long-time, strong coupling dynamics are understood by performing a mapping onto a classical diffusion process displaying non-Brownian behavior. While both dissipation and strong interactions tend to suppress coherence when acting separately, we find that strong interaction impedes the decoherence process generated by the dissipation.

12.
Phys Rev Lett ; 108(3): 037204, 2012 Jan 20.
Article En | MEDLINE | ID: mdl-22400780

We analyze the effects of different coupling anisotropies in a spin-1/2 ladder on the electron spin resonance (ESR) shift. Combining a perturbative expression in the anisotropies with density matrix renormalization group computation of the short range correlations at finite temperature, we provide the full temperature and magnetic field evolution of the ESR paramagnetic shift. We show that for well chosen parameters the ESR shift can be in principle used to extract quantitatively the anisotropies and, as an example, discuss the material BPCB.

13.
Nature ; 481(7382): 484-7, 2012 Jan 25.
Article En | MEDLINE | ID: mdl-22281597

In relativistic quantum field theory, information propagation is bounded by the speed of light. No such limit exists in the non-relativistic case, although in real physical systems, short-range interactions may be expected to restrict the propagation of information to finite velocities. The question of how fast correlations can spread in quantum many-body systems has been long studied. The existence of a maximal velocity, known as the Lieb-Robinson bound, has been shown theoretically to exist in several interacting many-body systems (for example, spins on a lattice)--such systems can be regarded as exhibiting an effective light cone that bounds the propagation speed of correlations. The existence of such a 'speed of light' has profound implications for condensed matter physics and quantum information, but has not been observed experimentally. Here we report the time-resolved detection of propagating correlations in an interacting quantum many-body system. By quenching a one-dimensional quantum gas in an optical lattice, we reveal how quasiparticle pairs transport correlations with a finite velocity across the system, resulting in an effective light cone for the quantum dynamics. Our results open perspectives for understanding the relaxation of closed quantum systems far from equilibrium, and for engineering the efficient quantum channels necessary for fast quantum computations.

14.
Phys Rev Lett ; 106(20): 200601, 2011 May 20.
Article En | MEDLINE | ID: mdl-21668211

We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

15.
Phys Rev Lett ; 105(25): 250401, 2010 Dec 17.
Article En | MEDLINE | ID: mdl-21231563

We consider the question of thermalization for isolated quantum systems after a sudden parameter change, a so-called quantum quench. In particular, we investigate the prerequisites for thermalization, focusing on the statistical properties of the time-averaged density matrix and of the expectation values of observables in the final eigenstates. We find that eigenstates, which are rare compared to the typical ones sampled by the microcanonical distribution, are responsible for the absence of thermalization of some infinite integrable models and play an important role for some nonintegrable systems of finite size, such as the Bose-Hubbard model. We stress the importance of finite size effects for the thermalization of isolated quantum systems and discuss two scenarios for thermalization.

16.
Phys Rev Lett ; 101(21): 210403, 2008 Nov 21.
Article En | MEDLINE | ID: mdl-19113396

We perform a theoretical study of a fermionic gas with two hyperfine states confined to an optical lattice. We derive a generic state diagram as a function of interaction strength, particle number, and confining potential. We discuss the central density, the double occupancy, and their derivatives as probes for the Mott state, connecting our findings to the recent experiment of Jördens et al. [Nature (London) 455, 204 (2008)10.1038/nature07244]. Using entropic arguments we compare two different strategies to reach the antiferromagnetic state in the presence of a trapping potential.

17.
Phys Rev Lett ; 98(18): 180601, 2007 May 04.
Article En | MEDLINE | ID: mdl-17501552

We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(3 Pt 2A): 036102, 2005 Mar.
Article En | MEDLINE | ID: mdl-15903488

We investigate the influence of different interaction strengths and dimerizations on the magnetization transport in antiferromagnetic spin 1/2 XXZ chains. We focus on the real-time evolution of the inhomogeneous initial state |upward arrow... upward arrow downward arrow... downward arrow > in using the adaptive time-dependent density-matrix renormalization group (adaptive t-DMRG). Time scales accessible to us are of the order of 100 units of time measured in Planck's/J for almost negligible error in the observables. We find ballistic magnetization transport for small S(z) S(z) interaction and arbitrary dimerization, but almost no transport for stronger S(z) S(z) interaction, with a sharp crossover at J(z) =1 . Additionally, we perform a detailed analysis of the error made by the adaptive time-dependent DMRG using the fact that the evolution in the XX model is known exactly. We find that the error at small times is dominated by the error made by the Trotter decomposition, whereas for longer times the DMRG truncation error becomes the most important, with a very sharp crossover at some "runaway" time. Overall, errors are extremely small before the "runaway" time.

...