Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Cureus ; 13(8): e17595, 2021 Aug.
Article En | MEDLINE | ID: mdl-34646647

Introduction The standard treatment for glioblastoma (GBM) patients is surgical tumor resection, followed by radiation and chemotherapy with temozolomide (TMZ). Unfortunately, 60% of newly diagnosed GBM patients express high levels of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) and are TMZ-resistant, and all patients eventually become refractory to treatment. The blood-brain barrier (BBB) is an obstacle to the delivery of chemotherapeutic agents to GBM, and BBB-permeable agents that are efficacious in TMZ-resistant and refractory patients are needed. The large amino acid transporter 1 (LAT1) is expressed on the BBB and in GBM and is detected at much lower levels in normal brain tissue. A LAT1-selective therapeutic would potentially target brain tumors while avoiding uptake by healthy tissue. Methods We report a novel chemical entity (QBS10072S) that combines a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate and tested it against GBM models in vitro and in vivo. For in vitro studies, DNA damage was assessed with a gamma H2A.X antibody and cell viability was assessed by WST-1 assay and/or CellTiter-Glo assay. For in vivo studies, QBS10072S (with or without radiation) was tested in orthotopic glioblastoma xenograft models, using overall survival and tumor size (as measured by bioluminescence), as endpoints. Results QBS10072S is 50-fold more selective for LAT1 vs. LAT2 in transport assays and demonstrates significant growth suppression in vitro of LAT1-expressing GBM cell lines. Unlike TMZ, QBS10072S is cytotoxic to cells with both high and low levels of MGMT expression. In orthotopic GBM xenografts, QBS10072S treatment significantly delayed tumorigenesis and prolonged animal survival compared to the vehicle without adverse effects. Conclusion QBS10072S is a novel BBB-permeable chemotherapeutic agent with the potential to treat TMZ-resistant and recurrent GBM as monotherapy or in combination with radiation treatment.

2.
Mol Cancer Ther ; 20(11): 2110-2116, 2021 11.
Article En | MEDLINE | ID: mdl-34635566

Development of metastases to central nervous system (CNS) is an increasing clinical issue following the diagnosis of advanced breast cancer. The propensity to metastasize to CNS varies by breast cancer subtype. Of the four breast cancer subtypes, triple-negative breast cancers (TNBC) have the highest rates of both parenchymal brain metastasis and leptomeningeal metastasis (LM). LM is rapidly fatal due to poor detection and limited therapeutic options. Therapy of TNBC brain metastasis and LM is challenged by multifocal brain metastasis and diffuse spread of LM, and must balance brain penetration, tumor cytotoxicity, and the avoidance of neurotoxicity. Thus, there is an urgent need for novel therapeutic options in TNBCs CNS metastasis. QBS10072S is a novel chemotherapeutic that leverages TNBC-specific defects in DNA repair and LAT1 (L-amino acid transporter type 1)-dependent transport into the brain. In our study, activity of QBS10072S was investigated in vitro with various cell lines including the human TNBC cell line MDA-MB-231 and its brain-tropic derivative MDA-MB-231-BR3. QBS10072S was preferentially toxic to TNBC cells. The efficacy of QBS10072S against brain metastasis and LM was tested using a model of brain metastasis based on the internal carotid injection of luciferase-expressing tumor cells into NuNu mice. The compound was well tolerated, delayed tumor growth and reduced leptomeningeal dissemination, resulting in significant extension of survival. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, QBS10072S is planned to be investigated in clinical trials as a therapeutic for TNBC LM. SIGNIFICANCE: TNBC brain metastasis often involves dissemination into leptomeninges. Treatment options for TNBC leptomeningeal metastasis are limited and are mostly palliative. Our study demonstrates significant efficacy of the brain-penetrating agent QBS10072S against TNBC brain metastasis and leptomeningeal spread.


Antineoplastic Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Mice , Neoplasm Metastasis
3.
Bioorg Med Chem Lett ; 21(21): 6582-5, 2011 Nov 01.
Article En | MEDLINE | ID: mdl-21920749

Structure-activity studies have led to a discovery of 3-(4-pyridyl)methyl ether derivative 9d that has 25- to 50-fold greater functional potency than R-baclofen at human and rodent GABA(B) receptors in vitro. Mouse hypothermia studies confirm that this compound crosses the blood-brain barrier and is approximately 50-fold more potent after systemic administration.


Baclofen/pharmacology , Drug Discovery , GABA Agonists/pharmacology , Receptors, GABA-B/drug effects , Animals , Baclofen/chemistry , Baclofen/pharmacokinetics , Blood-Brain Barrier , GABA Agonists/chemistry , GABA Agonists/pharmacokinetics , Humans , Mice
4.
J Pharmacol Exp Ther ; 330(3): 911-21, 2009 Sep.
Article En | MEDLINE | ID: mdl-19502531

Baclofen is a racemic GABA(B) receptor agonist that has a number of significant pharmacokinetic limitations, including a narrow window of absorption in the upper small intestine and rapid clearance from the blood. Arbaclofen placarbil is a novel transported prodrug of the pharmacologically active R-isomer of baclofen designed to be absorbed throughout the intestine by both passive and active mechanisms via the monocarboxylate type 1 transporter. Arbaclofen placarbil is rapidly converted to R-baclofen in human and animal tissues in vitro. This conversion seems to be primarily catalyzed in human tissues by human carboxylesterase-2, a major carboxylesterase expressed at high levels in various tissues including human intestinal cells. Arbaclofen placarbil was efficiently absorbed and rapidly converted to R-baclofen after oral dosing in rats, dogs, and monkeys. Exposure to R-baclofen was proportional to arbaclofen placarbil dose, whereas exposure to intact prodrug was low. Arbaclofen placarbil demonstrated enhanced colonic absorption, i.e., 5-fold higher R-baclofen exposure in rats and 12-fold higher in monkeys compared with intracolonic administration of R-baclofen. Sustained release formulations of arbaclofen placarbil demonstrated sustained R-baclofen exposure in dogs with bioavailability up to 68%. In clinical use, arbaclofen placarbil may improve the treatment of patients with gastroesophageal reflux disease, spasticity, and numerous other conditions by prolonging exposure and decreasing the fluctuations in plasma levels of R-baclofen.


Baclofen/pharmacokinetics , GABA Agonists/pharmacokinetics , Prodrugs/pharmacokinetics , Animals , Binding, Competitive/drug effects , Butyrates/metabolism , Carboxylesterase/metabolism , Carboxylic Ester Hydrolases/metabolism , Cells, Cultured , Chemistry, Pharmaceutical , Cytochrome P-450 Enzyme System/metabolism , Humans , Hydrolysis , Intestinal Absorption , Isobutyrates , Isoenzymes/drug effects , LLC-PK1 Cells , Male , Membranes, Artificial , Oocytes/drug effects , Oocytes/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution , Wine
5.
Pharmacol Res ; 59(6): 404-13, 2009 Jun.
Article En | MEDLINE | ID: mdl-19429473

While P-glycoprotein (PGP, ABCB1) is known to play an important role in drug exclusion at the blood brain barrier (BBB), less is known about the contribution of other members in the ATP-binding cassette (ABC) transporter family to BBB drug efflux, or whether these transporters are expressed differently in humans and in mammalian species of pharmacological interest. We used quantitative real-time PCR to determine mRNA expression levels for the majority of ABC family members in brain and in isolated brain microvessel endothelial capillary cells (BMEC) from human, rat, mouse, pig and cow. We confirmed BBB expression of several well-characterized ABC family members that are implicated in xenobiotic exclusion from the brain, including ABCB1 (PGP), ABCG2 (BCRP), ABCC1 (MRP1), ABCC4 (MRP4), and ABCC5 (MRP5). In addition, we detected high expression and enrichment in BMEC of several less well-characterized ABC transporters in one or more species, including ABCA2-4, ABCB4, ABCB6-8, ABCB10, ABCC3, ABCC6, ABCC10, and ABCE1. We also uncovered species differences in the expression of a number of transporters, including ABCG2 and ABCC4. This study identifies several additional ABC family members that may contribute to xenobiotic efflux at the human BBB, and compares the expression of a broad array of efflux transporters between human and four other species relevant to pharmacological research.


ATP-Binding Cassette Transporters/biosynthesis , Brain/metabolism , Endothelial Cells/metabolism , Microvessels/metabolism , ATP-Binding Cassette Transporters/genetics , Animals , Biological Transport , Blood-Brain Barrier/metabolism , Brain/blood supply , Cattle , Gene Expression Profiling , Humans , Mice , RNA, Messenger/biosynthesis , Rats , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Swine
6.
J Pharmacol Exp Ther ; 311(1): 315-23, 2004 Oct.
Article En | MEDLINE | ID: mdl-15146028

Gabapentin is thought to be absorbed from the intestine of humans and animals by a low-capacity solute transporter localized in the upper small intestine. Saturation of this transporter at doses used clinically leads to dose-dependent pharmacokinetics and high interpatient variability, potentially resulting in suboptimal drug exposure in some patients. XP13512 [(+/-)-1-([(alpha-isobutanoyloxyethoxy)carbonyl] aminomethyl)-1-cyclohexane acetic acid] is a novel prodrug of gabapentin designed to be absorbed throughout the intestine by high-capacity nutrient transporters. XP13512 was stable at physiological pH but rapidly converted to gabapentin in intestinal and liver tissue from rats, dogs, monkeys, and humans. XP13512 was not a substrate or inhibitor of major cytochrome P450 isoforms in transfected baculosomes or liver homogenates. The separated isomers of XP13512 showed similar cleavage in human tissues. The prodrug demonstrated active apical to basolateral transport across Caco-2 cell monolayers and pH-dependent passive permeability across artificial membranes. XP13512 inhibited uptake of (14)C-lactate by human embryonic kidney cells expressing monocarboxylate transporter type-1, and direct uptake of prodrug by these cells was confirmed using liquid chromatography-tandem mass spectrometry. XP13512 inhibited uptake of (3)H-biotin into Chinese hamster ovary cells overexpressing human sodium-dependent multivitamin transporter (SMVT). Specific transport by SMVT was confirmed by oocyte electrophysiology studies and direct uptake studies in human embryonic kidney cells after tetracycline-induced expression of SMVT. XP13512 is therefore a substrate for several high-capacity absorption pathways present throughout the intestine. Therefore, administration of the prodrug should result in improved gabapentin bioavailability, dose proportionality, and colonic absorption compared with administration of gabapentin.


Amines/pharmacokinetics , Carbamates/metabolism , Cyclohexanecarboxylic Acids/pharmacokinetics , Monocarboxylic Acid Transporters/metabolism , Prodrugs/metabolism , Symporters/metabolism , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/pharmacokinetics , Animals , Biological Transport , CHO Cells , Caco-2 Cells , Carbamates/chemical synthesis , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Dogs , Female , Gabapentin , Humans , Intestinal Mucosa/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Membranes, Artificial , Prodrugs/chemical synthesis , Protein Binding , Rats , gamma-Aminobutyric Acid/chemical synthesis
...