Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Cells ; 13(5)2024 Feb 29.
Article En | MEDLINE | ID: mdl-38474396

The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.


COVID-19 , Thrombosis , Humans , COVID-19/pathology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Endoplasmic Reticulum Chaperone BiP , Endothelial Cells/metabolism , In Situ Hybridization, Fluorescence , Peptidyl-Dipeptidase A/metabolism , Lung/metabolism , Thrombosis/pathology , Endothelium/metabolism , Homeostasis
2.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article En | MEDLINE | ID: mdl-38338937

Despite the availability of antibiotic therapy, tuberculosis (TB) is prevailing as a leading killer among human infectious diseases, which highlights the need for better intervention strategies to control TB. Several animal model systems, including mice, guinea pigs, rabbits, and non-human primates have been developed and explored to understand TB pathogenesis. Although each of these models contributes to our current understanding of host-Mycobacterium tuberculosis (Mtb) interactions, none of these models fully recapitulate the pathological spectrum of clinical TB seen in human patients. Recently, humanized mouse models are being developed to improvise the limitations associated with the standard mouse model of TB, including lack of necrotic caseation of granulomas, a pathological hallmark of TB in humans. However, the spatial immunopathology of pulmonary TB in humanized mice is not fully understood. In this study, using a novel humanized mouse model, we evaluated the spatial immunopathology of pulmonary Mtb infection with a low-dose inoculum. Humanized NOD/LtSscidIL2Rγ null mice containing human fetal liver, thymus, and hematopoietic CD34+ cells and treated with human cytokines were aerosol challenged to implant <50 pathogenic Mtb (low dose) in the lungs. At 2 and 4 weeks post infection, the tissue bacterial load, disease pathology, and spatial immunohistology were determined in the lungs, liver, spleen, and adipose tissue using bacteriological, histopathological, and immunohistochemical techniques. The results indicate that implantation of <50 bacteria can establish a progressive disease in the lungs that transmits to other tissues over time. The disease pathology in organs correspondingly increased with the bacterial load. A distinct spatial distribution of T cells, macrophages, and natural killer cells were noted in the lung granulomas. The kinetics of spatial immune cell distribution were consistent with the disease pathology in the lungs. Thus, the novel humanized model recapitulates several key features of human pulmonary TB granulomatous response and can be a useful preclinical tool to evaluate potential anti-TB drugs and vaccines.


Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Humans , Rabbits , Animals , Mice , Guinea Pigs , Mice, Inbred NOD , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/pathology , Tuberculosis/microbiology , Lung/pathology , Granuloma/pathology
4.
bioRxiv ; 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38370790

Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a major health problem with 10.6 million cases of the disease and 1.6 million deaths in 2021. It is well understood that pulmonary TB is due to replication of Mtb in the lung but quantitative details of Mtb replication and death in lungs of patients and how these rates are related to the degree of lung pathology are unknown. We performed experiments with rabbits infected with a novel, virulent clinical Mtb isolate of the Beijing lineage, HN878, carrying an unstable plasmid pBP10. In our in vitro experiments we found that pBP10 is more stable in HN878 strain than in a more commonly used laboratory-adapted Mtb strain H37Rv (the segregation coefficient being s=0.10 in HN878 vs. s=0.18 in H37Rv). Interestingly, the kinetics of plasmid-bearing bacteria in lungs of Mtb-infected rabbits did not follow an expected monotonic decline; the percent of plasmid-bearing cells increased between 28 and 56 days post-infection and remained stable between 84 and 112 days post-infection despite a large increase in bacterial numbers in the lung at late time points. Mathematical modeling suggested that such a non-monotonic change in the percent of plasmid-bearing cells can be explained if the lung Mtb population consists of several (at least 2) sub-populations with different replication/death kinetics: one major population expanding early and being controlled/eliminated, while another, a smaller population expanding at later times causing a counterintuitive increase in the percent of plasmid-bearing cells. Given that HN878 forms well circumscribed granulomas in rabbits, our results suggest independent bacterial dynamics in subsets of such granulomas. Our model predictions can be tested in future experiments in which HN878-pBP10 dynamics in individual granulomas is followed over time.

5.
Nat Commun ; 15(1): 1142, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326301

The lasting threat of viral pandemics necessitates the development of tailorable first-response antivirals with specific but adaptive architectures for treatment of novel viral infections. Here, such an antiviral platform has been developed based on a mixture of hetero-peptides self-assembled into functionalized ß-sheets capable of specific multivalent binding to viral protein complexes. One domain of each hetero-peptide is designed to specifically bind to certain viral proteins, while another domain self-assembles into fibrils with epitope binding characteristics determined by the types of peptides and their molar fractions. The self-assembled fibrils maintain enhanced binding to viral protein complexes and retain high resilience to viral mutations. This method is experimentally and computationally tested using short peptides that specifically bind to Spike proteins of SARS-CoV-2. This platform is efficacious, inexpensive, and stable with excellent tolerability.


COVID-19 , Humans , Peptides/chemistry , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Viral Proteins , Spike Glycoprotein, Coronavirus/metabolism
6.
PLoS One ; 18(10): e0287377, 2023.
Article En | MEDLINE | ID: mdl-37856429

We assessed the humoral immune responses to a COVID-19 vaccine in a well-controlled rhesus macaque model compared to humans immunized with two mRNA vaccines over several months post-second dose. The plasma IgG levels against seven coronaviruses (including SARS-CoV-2) and antibody subtypes (IgG 1-4 and IgM) against SARS-CoV-2 were evaluated using multiplex assays. The neutralization capacity of plasma antibodies against the original SAR-CoV-2 isolate and nine variants was evaluated in vaccinated humans and non-human primates. Immunization of macaques and humans with SARS-CoV-2 vaccines induced a robust neutralizing antibody response. In non-SIV-infected adult macaques immunized with an adenoviral vector expressing S-RBD (n = 7) or N protein (n = 3), elevated levels of IgG and neutralizing antibodies were detected 2 weeks post-second dose. Immune responses to the S-RBD vaccine in SIV-infected adult macaques (n = 2) were similar to the non-SIV-infected animals. Adult humans immunized with Pfizer (n = 35) or Moderna (n = 18) vaccines developed IgG and neutralizing antibodies at 4 weeks post-second dose. In both vaccine groups, IgG 1 was the predominant subtype, followed by IgG 3. The IgG levels, including total and IgG 1,2,3 elicited by the Moderna vaccine, were significantly higher than the corresponding levels elicited by the Pfizer vaccine at 4 weeks post-second dose. A significant correlation was observed between the plasma total IgG antibody levels and neutralization titers in both macaques and humans. Furthermore, broad-spectrum neutralization antibodies against several variants of SARS-CoV-2 were detected in the plasma of both macaques and humans after two vaccinations.


COVID-19 Vaccines , COVID-19 , Adult , Animals , Humans , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Vaccination , Broadly Neutralizing Antibodies , Immunity , Antibodies, Viral
7.
Front Immunol ; 14: 1270414, 2023.
Article En | MEDLINE | ID: mdl-37854602

Introduction: The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection involves pulmonary inflammation that can progress to acute respiratory distress syndrome, a primary cause of lung damage/fibrosis in patients with Coronavirus Disease-2019 (COVID-19). Currently, there is no efficacious therapy available to alleviate lung fibrosis in COVID-19 cases. In this proof-of-concept study, we evaluated the effect of CC-11050, a small molecule phosphodiesterase-4 inhibitor, in dampening lung inflammation and fibrosis in a hamster model of SARS-CoV-2 infection. Methods: Following intranasal inoculation with SARS-CoV-2/WA- 1/2000 strain, hamsters were treated with CC-11050 or placebo by gavage from day-1 until day-16 post-infection (dpi). Animals were monitored for body weight changes, virus titers, histopathology, fibrotic remodeling, cellular composition in the lungs between 2 and 16 dpi. Results: We observed significant reduction in lung viral titer with concomitant reduction in inflammation and fibrotic remodeling in CC-11050 treated hamsters compared to untreated animals. The reductions in immunopathologic manifestations were associated with significant downregulation of inflammatory and fibrotic remodeling gene expression, reduced infiltration of activated monocytes, granulocytes, and reticular fibroblasts in CC-11050 treated animals. Cellular studies indicate a link between TNF-α and fibrotic remodeling during CC-11050 therapy. Discussion: These findings suggest that CC-11050 may be a potential host-directed therapy to dampen inflammation and fibrosis in COVID-19 cases.


COVID-19 , Phosphodiesterase 4 Inhibitors , Pulmonary Fibrosis , Humans , Cricetinae , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4 , SARS-CoV-2 , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/etiology , Inflammation/drug therapy
8.
Front Biosci (Elite Ed) ; 15(3): 15, 2023 07 06.
Article En | MEDLINE | ID: mdl-37743234

BACKGROUND: Extrapulmonary tuberculosis (EPTB) accounts for a fifth of all Mycobacterium tuberculosis (M. tb) infections worldwide. The rise of multidrug resistance in M. tb alongside the hepatotoxicity associated with antibiotics presents challenges in managing and treating tuberculosis (TB), thereby prompting a need for new therapeutic approaches. Administration of liposomal glutathione (L-GSH) has previously been shown to lower oxidative stress, enhance a granulomatous response, and reduce the burden of M. tb in the lungs of M. tb-infected mice. However, the effects of L-GSH supplementation during active EPTB in the liver and spleen have yet to be explored. METHODS: In this study, we evaluated hepatic glutathione (GSH) and malondialdehyde (MDA) levels, and the cytokine profiles of untreated and L-GSH-treated M. tb-infected wild type (WT) mice. Additionally, the hepatic and splenic M. tb burdens and tissue pathologies were also assessed. RESULTS: L-GSH supplementation increased total hepatic levels and reduced GSH. A decrease in the levels of MDA, oxidized GSH, and interleukin (IL)-6 was also detected following L-GSH treatment. Furthermore, L-GSH supplementation was observed to increase interferon-gamma (IFN-γ) and tumor necrosis factor (TNF)-α production and decrease IL-10 levels. M. tb survival was significantly reduced in the liver and spleen following L-GSH supplementation. L-GSH treatment also provided a host-protective effect in the liver and spleen of M. tb-infected mice. CONCLUSIONS: Overall, L-GSH supplementation elevated the levels of total and reduced forms of GSH in the liver and reduced the burden of M. tb by decreasing oxidative stress, enhancing the production of immunosupportive cytokines, and reducing the levels of immunosuppressive cytokines. These observed benefits highlight the potential of L-GSH supplementation during active EPTB and provide insight into novel therapeutic interventions against M. tb infections.


Spleen , Tuberculosis, Extrapulmonary , Animals , Mice , Liver , Cytokines , Glutathione , Dietary Supplements
9.
Vaccines (Basel) ; 11(4)2023 Apr 12.
Article En | MEDLINE | ID: mdl-37112744

The rapid development of several highly efficacious SARS-CoV-2 vaccines was an unprecedented scientific achievement that saved millions of lives. However, now that SARS-CoV-2 is transitioning to the endemic stage, there exists an unmet need for new vaccines that provide durable immunity and protection against variants and can be more easily manufactured and distributed. Here, we describe a novel protein component vaccine candidate, MT-001, based on a fragment of the SARS-CoV-2 spike protein that encompasses the receptor binding domain (RBD). Mice and hamsters immunized with a prime-boost regimen of MT-001 demonstrated extremely high anti-spike IgG titers, and remarkably this humoral response did not appreciably wane for up to 12 months following vaccination. Further, virus neutralization titers, including titers against variants such as Delta and Omicron BA.1, remained high without the requirement for subsequent boosting. MT-001 was designed for manufacturability and ease of distribution, and we demonstrate that these attributes are not inconsistent with a highly immunogenic vaccine that confers durable and broad immunity to SARS-CoV-2 and its emerging variants. These properties suggest MT-001 could be a valuable new addition to the toolbox of SARS-CoV-2 vaccines and other interventions to prevent infection and curtail additional morbidity and mortality from the ongoing worldwide pandemic.

10.
bioRxiv ; 2023 Feb 03.
Article En | MEDLINE | ID: mdl-36778404

Granulomas are an important hallmark of Mycobacterium tuberculosis (Mtb) infection. They are organized and dynamic structures created by an assembly of immune cells around the sites of infection in the lungs to locally restrict the bacterial growth and the host's inflammatory responses. The cellular architecture of granulomas is traditionally studied by immunofluorescence labeling of phenotypic surface markers. However, very few antibodies are available for model animals used in tuberculosis research, such as non-human primates and rabbits; secreted immunological markers such as cytokines cannot be imaged in situ using antibodies; and traditional phenotypic surface markers do not provide sufficient resolution for the detection of many subtypes and differentiation states of immune cells. Using single-molecule fluorescent in situ hybridization (smFISH) and its derivatives, amplified smFISH (ampFISH) and iterative smFISH, we developed a platform for imaging mRNAs encoding immune markers in rabbit and macaque tuberculosis granulomas. Multiplexed imaging for several mRNA and protein markers was followed by quantitative measurement of expression of these markers in single cells in situ. A quantitative analysis of combinatorial expressions of these markers allowed us to classify the cells into several subtypes and chart their distributions within granulomas. For one mRNA target, HIF-1α, we were able to image its mRNA and protein in the same cells, demonstrating the specificity of probes. This method paves the way for defining granular differentiation states and cell subtypes from transcriptomic data, identifying key mRNA markers for these cell subtypes, and then locating the cells in the spatial context of granulomas.

11.
Adv Funct Mater ; 32(40): 2204462, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-35942271

SARS-CoV-2 has led to a worldwide pandemic, catastrophically impacting public health and the global economy. Herein, a new class of lipid-modified polymer poly (ß-amino esters) (L-PBAEs) is developed via enzyme-catalyzed esterification and further formulation of the L-PBAEs with poly(d,l-lactide-coglycolide)-b-poly(ethylene glycol) (PLGA-PEG) leads to self-assembly into a "particle-in-particle" (PNP) nanostructure for gene delivery. Out of 24 PNP candidates, the top-performing PNP/C12-PBAE nanoparticles efficiently deliver both DNA and mRNA in vitro and in vivo, presenting enhanced transfection efficacy, sustained gene release behavior, and excellent stability for at least 12 months of storage at -20 °C after lyophilization without loss of transfection efficacy. Encapsulated with spike encoded plasmid DNA and mRNA, the lipid-modified polymeric PNP COVID-19 vaccines successfully elicit spike-specific antibodies and Th1-biased T cell immune responses in immunized mice even after 12 months of lyophilized storage at -20 °C. This newly developed lipid-polymer hybrid PNP nanoparticle system demonstrates a new strategy for both plasmid DNA and mRNA delivery with the capability of long-term lyophilized storage.

12.
Front Pharmacol ; 13: 879729, 2022.
Article En | MEDLINE | ID: mdl-35814213

Both active tuberculosis (TB) and asymptomatic latent Mycobacterium tuberculosis (M. tb) infection (LTBI) cause significant health burdens to humans worldwide. Individuals with immunocompromising health conditions, such as Type 2 Diabetes Mellitus (T2DM), have a weakened ability to control M. tb infection and are more susceptible to reactivation of LTBI to active diseases. T2DM cases are known to have glutathione (GSH) deficiency and impaired immune cell function, including the granulomatous response to M. tb infection. We have previously reported that liposomal glutathione (L-GSH) supplementation can restore the immune cell effector responses of T2DM cases. However, the effects of L-GSH supplementation on the bactericidal activities of first-line anti-TB drug rifampicin (RIF) against M. tb infection have yet to be explored. The aim of this study is to elucidate the effects of L-GSH supplementation in conjunction with RIF treatment during an active M. tb infection in a diabetic mouse model. In this study, we evaluated total and reduced levels of GSH, cytokine profiles, malondialdehyde (MDA) levels, M. tb burden, and granulomatous response in the lungs. We show that L-GSH supplementation caused a significant reduction in M. tb burden in the lungs, decreased oxidative stress, and increased the production of IFN-γ, TNF-α, IL-17, IL-10, and TGF-ß1compared to the untreated mice. In addition, L-GSH supplementation in conjunction with RIF treatment achieved better control of M. tb infection in the lungs and significantly reduced the levels of oxidative stress compared to treatment with RIF alone. Moreover, L-GSH in conjunction with RIF significantly increased TGF-ß1 levels compared to treatment with RIF alone. These findings suggest potential therapeutic benefits of L-GSH supplementation in conjunction with first-line antibiotic therapy against M. tb infection in individuals with T2DM.

13.
Biomedicines ; 10(6)2022 Jun 07.
Article En | MEDLINE | ID: mdl-35740365

The Coronavirus disease 2019 (COVID-19) pandemic disproportionately affects immunocompetent and immunocompromised individuals, with the latter group being more vulnerable to severe disease and death. However, the differential pathogenesis of SARS-CoV-2 in the context of a specific immunological niche remains unknown. Similarly, systematic analysis of disease pathology in various extrapulmonary organs in immunocompetent and immunocompromised hosts during SARS-CoV-2 infection is not fully understood. We used a hamster model of SARS-CoV-2 infection, which recapitulates the pathophysiology of patients with mild-to-moderate COVID-19, to determine the dynamics of SARS-CoV-2 replication and histopathology at organ-level niches and map how COVID-19 symptoms vary in different immune contexts. Hamsters were intranasally infected with low (LD) or high (HD) inoculums of SARS-CoV-2, and the kinetics of disease pathology and viral load in multiple organs, antibody response, inflammatory cytokine expression, and genome-wide lung transcriptome by RNAseq analysis were determined and compared against corresponding responses from chemically induced immunocompromised hamsters. We observed transient body weight loss proportional to the SARS-CoV-2 infectious dose in immunocompetent hamsters. The kinetics of viral replication and peak viral loads were similar between LD and HD groups, although the latter developed more severe disease pathology in organs. Both groups generated a robust serum antibody response. In contrast, infected immunocompromised animals showed more prolonged body weight loss and mounted an inadequate SARS-CoV-2-neutralizing antibody response. The live virus was detected in the pulmonary and extrapulmonary organs for extended periods. These hamsters also had persistent inflammation with severe bronchiolar-alveolar hyperplasia/metaplasia. Consistent with the differential disease presentation, distinct changes in inflammation and immune cell response pathways and network gene expression were seen in the lungs of SARS-CoV-2-infected immunocompetent and immunocompromised animals.

14.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Article En | MEDLINE | ID: mdl-35453358

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), is responsible for causing significant morbidity and mortality, especially among individuals with compromised immune systems. We have previously shown that the supplementation of liposomal glutathione (L-GSH) reduces M. tb viability and enhances a Th-1 cytokine response, promoting granuloma formation in human peripheral blood mononuclear cells in vitro. However, the effects of L-GSH supplementation in modulating the immune responses in the lungs during an active M. tb infection have yet to be explored. In this article, we report the effects of L-GSH supplementation during an active M. tb infection in a mouse model of pulmonary infection. We determine the total GSH levels, malondialdehyde (MDA) levels, cytokine profiles, granuloma formation, and M. tb burden in untreated and L-GSH-treated mice over time. In 40 mM L-GSH-supplemented mice, an increase in the total GSH levels was observed in the lungs. When compared to untreated mice, the treatment of M. tb-infected mice with 40 mM and 80 mM L-GSH resulted in a reduction in MDA levels in the lungs. L-GSH treatment also resulted in a significant increase in the levels of IL-12, IFN-γ, IL-2, IL-17, and TNF-α in the lungs, while down-regulating the production of IL-6, IL-10, and TGF-ß in the lungs. A reduction in M. tb survival along with a decrease in granuloma size in the lungs of M. tb-infected mice was observed after L-GSH treatment. Our results show that the supplementation of mice with L-GSH led to increased levels of total GSH, which is associated with reduced oxidative stress, increased levels of granuloma-promoting cytokines, and decreased M. tb burden in the lung. These results illustrate how GSH can help mitigate M. tb infection and provide an insight into future therapeutic interventions.

15.
Sci Rep ; 12(1): 3794, 2022 03 08.
Article En | MEDLINE | ID: mdl-35260703

SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.


Microscopy/methods , SARS-CoV-2/physiology , Virus Internalization , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , Cytoplasm/chemistry , Cytoplasm/ultrastructure , Cytoplasm/virology , Extracellular Vesicles/chemistry , Extracellular Vesicles/ultrastructure , Giant Cells/chemistry , Giant Cells/physiology , Helium/chemistry , Humans , Ions/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
16.
Commun Biol ; 4(1): 1256, 2021 11 03.
Article En | MEDLINE | ID: mdl-34732811

In vitro phagocytosis of Mycobacterium tuberculosis (Mtb) aggregates (Mtb-AG), rather than similar numbers of single bacilli (Mtb-SC), induces host macrophage death and favors bacterial growth. Here, we examined whether aggregation contributes to enhanced Mtb pathogenicity in vivo in rabbit lungs. Rabbits were exposed to infectious aerosols containing mainly Mtb-AG or Mtb-SC. The lung bacterial load, systemic immune response, histology, and immune cell composition were investigated over time. Genome-wide transcriptome analysis, cellular and tissue-level assays, and immunofluorescent imaging were performed on lung tissue to define and compare immune activation and pathogenesis between Mtb-AG and Mtb-SC infection. Lung bacillary loads, disease scores, lesion size, and structure were significantly higher in Mtb-AG than Mtb-SC infected animals. Differences in immune cell distribution and activation were noted in the lungs of the two groups of infected animals. Consistently larger lung granulomas with large aggregates of Mtb, extensive necrotic foci, and elevated matrix metalloproteases expression were observed in Mtb-AG infected rabbits. Our findings suggest that bacillary aggregation increases Mtb fitness for improved growth and accelerates lung inflammation and infected host cell death, thereby exacerbating disease pathology in the lungs.


Adaptive Immunity , Host-Pathogen Interactions , Immunity, Innate , Lung Diseases/immunology , Mycobacterium tuberculosis/physiology , Phagocytosis , Animals , Female , Lung Diseases/microbiology , Rabbits
17.
Biomol Concepts ; 12(1): 46-54, 2021 Jun 01.
Article En | MEDLINE | ID: mdl-34062056

With a disease as widespread and destructive as tuberculosis, more effective drugs and healthcare strategies, in addition to the current antibiotics regimen, are crucial for the enhanced well-being of millions of people suffering from the disease. Host-directed therapy is a new and emerging concept in treating chronic infectious diseases, such as tuberculosis. Repurposing of anti-cancer drugs, such as everolimus, may be an effective way to supplement the standard antibiotic treatment. Individuals with type 2 diabetes are increasingly susceptible to co-morbidities and co-infections including Mycobacterium tuberculosis, the causative agent of tuberculosis. We demonstrated in this study that in vitro everolimus treatment of granulomas from individuals with type 2 diabetes caused significant reduction in the viability of Mycobacterium tuberculosis.Further investigations revealed the effects of everolimus in targeting foamy macrophages, a macrophage phenotype that forms around granulomas, and is characterized by a higher lipid accumulation inside the cells. These foamy macrophages are thought to harbor dormant bacilli, which are potential sources of disease reactivation. Therefore, blocking foamy macrophage formation would help better killing of intracellular bacteria. Here, we report the potential of everolimus treatment to downregulate lipid content within the foamy macrophages of in vitro granulomas, thus leading to a potential decrease in the number of foamy macrophages and a more robust response to Mycobacterium tuberculosis.


Diabetes Mellitus, Type 2/immunology , Everolimus/pharmacology , Immunity , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Adolescent , Adult , Aged , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Female , Granuloma/immunology , Humans , Immunosuppressive Agents/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/microbiology , Macrophages/drug effects , Macrophages/microbiology , Male , Middle Aged , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy , Tuberculosis/metabolism , Tuberculosis/microbiology , Young Adult
18.
Methods Protoc ; 4(1)2021 Feb 27.
Article En | MEDLINE | ID: mdl-33673589

The Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) causes Coronavirus disease-2019 (COVID-19), which is an ongoing pandemic that has significantly affected the health, economy, and socio-economic status of individuals worldwide. Laboratory research using in vitro, ex vivo and in vivo models has been accelerated to understand the pathogenesis of SARS-CoV-2 infection. However, such experimental research involving SARS-CoV-2 is restricted to biocontainment/safety level-3 (BSL-3) settings, due to the high pathogenicity of this virus. Since many of the downstream analyses of SARS-CoV-2-infected biological samples need to be conducted in a non-BSL3 setting, it is important to ensure that the samples are fully decontaminated and safe for subsequent analysis. Here, we report the effectiveness of standard procedures used to fix cells and tissues for pathological analysis, including 2% or 4% paraformaldehyde, 50%-70% ethanol, 10% neutral buffered formalin and ultrafiltration using membranes with a molecular weight cut-off (MWCO) ranging from 3 to 30 kDa, for inactivating or eliminating SARS-CoV-2. We validated these methods in experimental laboratory samples, such as viral inoculum in cell culture media, SARS-CoV-2 infected host cells and animal tissue lysates. We found that 15 minutes' treatment of viral inoculum (105 plaque-forming units; PFU) or SARS-CoV-2 infected cells with paraformaldehyde or 70% ethanol resulted in complete inactivation of the virus. The treatment of infected hamster lung tissues with 10% neutral buffered formalin also fully inactivated the virus. However, only 3 kDa ultracentrifuge filter was effective in eliminating the virus to an undetectable limit in the filtrate. Our validated methods are useful for decontaminating biological samples to reduce infection risk and safe handling in BSL2 facilities.

19.
Appl Sci (Basel) ; 11(17)2021 Sep.
Article En | MEDLINE | ID: mdl-35371562

Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), continues to be a global health burden. We have reported that patients with marked deficiency in the production of glutathione (GSH) had impaired granulomatous effector responses against M. tb infection, which were restored when supplementing patients with liposomal GSH (lGSH). However, the effects of GSH deficiency in the lung parenchyma in altering granuloma formation and effector responses against M. tb infection remain unexplored. We aim to elucidate the effects of diethyl maleate (DEM)-induced GSH deficiency during an active M. tb infection in an in vivo mouse model. We assessed for total and reduced GSH levels, malondialdehyde (MDA) levels, cytokine profiles, granuloma formation and M. tb burden. DEM administration significantly diminished total and reduced GSH levels in the lungs and plasma and increased MDA levels in infected mice compared to sham-treated controls. DEM treatment was also associated with an increase in IL-6, TNF-α and ill-formed granulomas in infected mice. Furthermore, M. tb survival was significantly increased along with a higher pulmonary and extrapulmonary bacterial load following DEM treatment. Overall, GSH deficiency led to increased oxidative stress, impaired granuloma response, and increased M. tb survival in infected mice. These findings can provide insight into how GSH deficiency can interfere with the control of M. tb infection and avenues for novel therapeutic approaches.

20.
ACS Infect Dis ; 6(12): 3141-3146, 2020 12 11.
Article En | MEDLINE | ID: mdl-33226778

The efficacy of bacille Calmette-Guerin (BCG) vaccination against tuberculosis is highly variable, and protective immunity elicited by BCG is poorly understood. We compared the cytokine/chemokine profiles of peripheral blood mononuclear cells (PBMC) obtained from infants BCG-vaccinated at birth to those of PBMC obtained from infants before (delayed) BCG vaccination. The PBMC from 10-week-old BCG-vaccinated infants released higher levels of pro-inflammatory molecules than PBMCs from the nonvaccinated counterpart. In vitro exposure of PBMCs from BCG-vaccinated infants, but not nonvaccinated infants, to two different Mycobacterium tuberculosis strains showed distinct pro- and anti-inflammatory cytokine/chemokine patterns. Thus, BCG-induced infant immune responses and their potential protective capacity may be shaped by the nature of the infecting Mtb strain.


BCG Vaccine , Leukocytes , Mycobacterium tuberculosis , Humans , Immunity , Infant , Interferon-gamma , Leukocytes, Mononuclear , Tuberculosis/immunology , Tuberculosis/prevention & control , Vaccination
...