Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 20(8): 20240336, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102458

RESUMEN

Domestication has long been considered the most powerful evolutionary engine behind dramatic reductions in brain size in several taxa, and the dog (Canis familiaris) is considered as a typical example that shows a substantial decrease in brain size relative to its ancestor, the grey wolf (Canis lupus). However, to make the case for exceptional evolution of reduced brain size under domestication requires an interspecific approach in a phylogenetic context that can quantify the extent by which domestication reduces brain size in comparison to closely related non-domesticated species responding to different selection factors in the wild. Here, we used a phylogenetic method to identify evolutionary singularities to test if the domesticated dog stands out in terms of relative brain size from other species of canids. We found that the dog does not present unambiguous signature of evolutionary singularity with regard to its small brain size, as the results were sensitive to the considerations about the ancestral trait values upon domestication. However, we obtained strong evidence for the hibernating common raccoon dog (Nyctereutes procyonoides) being an evolutionary outlier for its brain size. Therefore, domestication is not necessarily an exceptional case concerning evolutionary reductions in brain size in an interspecific perspective.


Asunto(s)
Evolución Biológica , Encéfalo , Canidae , Domesticación , Filogenia , Animales , Encéfalo/anatomía & histología , Perros/anatomía & histología , Tamaño de los Órganos , Canidae/anatomía & histología , Lobos/anatomía & histología , Especificidad de la Especie , Perros Mapache/anatomía & histología
2.
Sci Data ; 11(1): 753, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013883

RESUMEN

Computed tomography (CT) is a non-invasive, three-dimensional imaging tool used in medical imaging, forensic science, industry and engineering, anthropology, and archaeology. The current study used high-resolution medical CT scanning of 431 animal skulls, including 399 dog skulls from 152 breeds, 14 cat skulls from 9 breeds, 14 skulls from 8 wild canid species (gray wolf, golden jackal, coyote, maned wolf, bush dog, red fox, Fennec fox, bat-eared fox), and 4 skulls from 4 wild felid species (wildcat, leopard, serval, caracal). This comprehensive and unique collection of CT image series of skulls can provide a solid foundation not only for comparative anatomical and evolutionary studies but also for the advancement of veterinary education, virtual surgery planning, and the facilitation of training in sophisticated machine learning methodologies.


Asunto(s)
Canidae , Felidae , Cráneo , Tomografía Computarizada por Rayos X , Animales , Cráneo/anatomía & histología , Cráneo/diagnóstico por imagen , Canidae/anatomía & histología , Felidae/anatomía & histología , Gatos/anatomía & histología , Perros/anatomía & histología
3.
Brain Behav Evol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043150

RESUMEN

INTRODUCTION: Variation in eye size is sometimes closely associated with brain morphology. Visual information, detected by the retina, is transferred to the optic tectum to coordinate eye and body movements towards stimuli, and thereafter distributed into other brain regions for further processing. The telencephalon is an important visual processing region in many vertebrate species and a highly developed region in visually dependent species. Yet, the existence of a coevolutionary relationship between telencephalon size and eye size remains relatively unknown. METHODS: Here, we use male and female guppies artificially selected for small- and large-relative-telencephalon-size to test if artificial selection on telencephalon size results in changes in eye size. In addition, we performed an optomotor test as a proxy for visual acuity. RESULTS: We found no evidence that eye size changes with artificial selection on telencephalon size. Eye size was similar in both absolute and relative terms between the two selection regimes, but was larger in females. This is most likely because of the larger body size in females, but it could also reflect their greater need for visual capacity due to sex-specific differences in foraging and mating behaviour. Although the optomotor response was stronger in guppies with a larger telencephalon, we found no evidence for differences in visual acuity between the selection regimes. CONCLUSION: Our study suggests that eye size and visual perception in guppies does not change rapidly with strong artificial selection on telencephalon size.

4.
Behav Ecol ; 35(4): arae033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779596

RESUMEN

Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.

5.
Behav Ecol ; 35(3): arae026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638166

RESUMEN

Some cognitive abilities are suggested to be the result of a complex social life, allowing individuals to achieve higher fitness through advanced strategies. However, most evidence is correlative. Here, we provide an experimental investigation of how group size and composition affect brain and cognitive development in the guppy (Poecilia reticulata). For 6 months, we reared sexually mature females in one of 3 social treatments: a small conspecific group of 3 guppies, a large heterospecific group of 3 guppies and 3 splash tetras (Copella arnoldi)-a species that co-occurs with the guppy in the wild, and a large conspecific group of 6 guppies. We then tested the guppies' performance in self-control (inhibitory control), operant conditioning (associative learning), and cognitive flexibility (reversal learning) tasks. Using X-ray imaging, we measured their brain size and major brain regions. Larger groups of 6 individuals, both conspecific and heterospecific groups, showed better cognitive flexibility than smaller groups but no difference in self-control and operant conditioning tests. Interestingly, while social manipulation had no significant effect on brain morphology, relatively larger telencephalons were associated with better cognitive flexibility. This suggests alternative mechanisms beyond brain region size enabled greater cognitive flexibility in individuals from larger groups. Although there is no clear evidence for the impact on brain morphology, our research shows that living in larger social groups can enhance cognitive flexibility. This indicates that the social environment plays a role in the cognitive development of guppies.

6.
Nat Ecol Evol ; 8(1): 98-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985898

RESUMEN

The organization and coordination of fish schools provide a valuable model to investigate the genetic architecture of affiliative behaviours and dissect the mechanisms underlying social behaviours and personalities. Here we used replicate guppy selection lines that vary in schooling propensity and combine quantitative genetics with genomic and transcriptomic analyses to investigate the genetic basis of sociability phenotypes. We show that consistent with findings in collective motion patterns, experimental evolution of schooling propensity increased the sociability of female, but not male, guppies when swimming with unfamiliar conspecifics. This finding highlights a relevant link between coordinated motion and sociability for species forming fission-fusion societies in which both group size and the type of social interactions are dynamic across space and time. We further show that alignment and attraction, the two major traits forming the sociability personality axis in this species, showed heritability estimates at the upper end of the range previously described for social behaviours, with important variation across sexes. The results from both Pool-seq and RNA-seq data indicated that genes involved in neuron migration and synaptic function were instrumental in the evolution of sociability, highlighting a crucial role of glutamatergic synaptic function and calcium-dependent signalling processes in the evolution of schooling.


Asunto(s)
Peces , Conducta Social , Animales , Femenino , Peces/fisiología , Genoma , Genómica , Perfilación de la Expresión Génica
7.
J Evol Biol ; 36(12): 1796-1810, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37916730

RESUMEN

Among-individual variation in cognitive traits, widely assumed to have evolved under adaptive processes, is increasingly being demonstrated across animal taxa. As variation among individuals is required for natural selection, characterizing individual differences and their heritability is important to understand how cognitive traits evolve. Here, we use a quantitative genetic study of wild-type guppies repeatedly exposed to a 'detour task' to test for genetic variance in the cognitive trait of inhibitory control. We also test for genotype-by-environment interactions (GxE) by testing related fish under alternative experimental treatments (transparent vs. semi-transparent barrier in the detour-task). We find among-individual variation in detour task performance, consistent with differences in inhibitory control. However, analysis of GxE reveals that heritable factors only contribute to performance variation in one treatment. This suggests that the adaptive evolutionary potential of inhibitory control (and/or other latent variables contributing to task performance) may be highly sensitive to environmental conditions. The presence of GxE also implies that the plastic response of detour task performance to treatment environment is genetically variable. Our results are consistent with a scenario where variation in individual inhibitory control stems from complex interactions between heritable and plastic components.


Asunto(s)
Poecilia , Animales , Poecilia/genética , Fenotipo
8.
Nat Commun ; 14(1): 6027, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758730

RESUMEN

One of the most spectacular displays of social behavior is the synchronized movements that many animal groups perform to travel, forage and escape from predators. However, elucidating the neural mechanisms underlying the evolution of collective behaviors, as well as their fitness effects, remains challenging. Here, we study collective motion patterns with and without predation threat and predator inspection behavior in guppies experimentally selected for divergence in polarization, an important ecological driver of coordinated movement in fish. We find that groups from artificially selected lines remain more polarized than control groups in the presence of a threat. Neuroanatomical measurements of polarization-selected individuals indicate changes in brain regions previously suggested to be important regulators of perception, fear and attention, and motor response. Additional visual acuity and temporal resolution tests performed in polarization-selected and control individuals indicate that observed differences in predator inspection and schooling behavior should not be attributable to changes in visual perception, but rather are more likely the result of the more efficient relay of sensory input in the brain of polarization-selected fish. Our findings highlight that brain morphology may play a fundamental role in the evolution of coordinated movement and anti-predator behavior.


Asunto(s)
Poecilia , Animales , Conducta Predatoria , Neuroanatomía , Escolaridad , Movimiento (Física)
9.
PNAS Nexus ; 2(6): pgad129, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37346268

RESUMEN

Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.

10.
Evolution ; 77(7): 1591-1606, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37071597

RESUMEN

Domestication is a well-known example of the relaxation of environmentally based cognitive selection that leads to reductions in brain size. However, little is known about how brain size evolves after domestication and whether subsequent directional/artificial selection can compensate for domestication effects. The first animal to be domesticated was the dog, and recent directional breeding generated the extensive phenotypic variation among breeds we observe today. Here we use a novel endocranial dataset based on high-resolution CT scans to estimate brain size in 159 dog breeds and analyze how relative brain size varies across breeds in relation to functional selection, longevity, and litter size. In our analyses, we controlled for potential confounding factors such as common descent, gene flow, body size, and skull shape. We found that dogs have consistently smaller relative brain size than wolves supporting the domestication effect, but breeds that are more distantly related to wolves have relatively larger brains than breeds that are more closely related to wolves. Neither functional category, skull shape, longevity, nor litter size was associated with relative brain size, which implies that selection for performing specific tasks, morphology, and life history does not necessarily influence brain size evolution in domesticated species.


Asunto(s)
Lobos , Embarazo , Femenino , Perros , Animales , Lobos/genética , Tamaño de la Camada , Longevidad , Tamaño de los Órganos , Domesticación
11.
Proc Biol Sci ; 289(1978): 20220844, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858069

RESUMEN

Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.


Asunto(s)
Poecilia , Animales , Encéfalo/anatomía & histología , Cognición , Aprendizaje Discriminativo , Femenino , Aprendizaje Inverso
12.
Evolution ; 76(1): 128-138, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806770

RESUMEN

Mosaic brain evolution, the change in the size of separate brain regions in response to selection on cognitive performance, is an important idea in the field of cognitive evolution. However, untill now, most of the data on how separate brain regions respond to selection and their cognitive consequences stem from comparative studies. To experimentally investigate the influence of mosaic brain evolution on cognitive ability, we used male guppies artificially selected for large and small telencephalons relative to the rest of the brain. Here, we tested an important aspect of executive cognitive ability using a detour task. We found that males with larger telencephalons outperformed males with smaller telencephalons. Fish with larger telencephalons showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier (i.e., through correct detouring) during the test phase. Together, our findings provide the first experimental evidence showing that evolutionary enlargement of relative telencephalon size confers cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.


Asunto(s)
Poecilia , Animales , Encéfalo , Cognición , Masculino , Poecilia/fisiología , Telencéfalo
13.
Behav Ecol ; 32(6): 1103-1113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34949959

RESUMEN

Choosing a mate is one of the most important decisions in an animal's lifetime. Female mate choice is often guided by the presence or intensity of male sexual ornaments, which must be integrated and compared among potential mates. Individuals with greater cognitive abilities may be better at evaluating and comparing sexual ornaments, even when the difference in ornaments is small. While brain size is often used as a proxy for cognitive ability, its effect on mate choice has rarely been investigated. Here, we investigate the effect of brain size on mate preferences in the pygmy halfbeak Dermogenys collettei, a small freshwater fish that forms mixed-sex shoals where mating takes place. Pygmy halfbeaks are ideal models as their semi-transparent heads allow for external brain measurements. After validating the use of external measurements as a proxy for internal brain size, we presented females with large or small brains (relative to body length) with two males that had either a large or small difference in sexual ornamentation (measured by the total area of red coloration). Unexpectedly, neither total relative brain size nor relative telencephalon size affected any measured aspect of mate preference. However, the difference in male sexual ornamentation did affect preference, with females preferring males with a smaller area of red coloration when the difference in ornaments was large. This study highlights the complexities of mate choice and the importance of considering a range of stimuli when examining mate preferences.

14.
Sci Adv ; 7(46): eabj4314, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34757792

RESUMEN

The mosaic brain evolution hypothesis, stating that brain regions can evolve relatively independently during cognitive evolution, is an important idea to understand how brains evolve with potential implications even for human brain evolution. Here, we provide the first experimental evidence for this hypothesis through an artificial selection experiment in the guppy (Poecilia reticulata). After four generations of selection on relative telencephalon volume (relative to brain size), we found substantial changes in telencephalon size but no changes in other regions. Further comparisons revealed that up-selected lines had larger telencephalon, while down-selected lines had smaller telencephalon than wild Trinidadian populations. Our results support that independent evolutionary changes in specific brain regions through mosaic brain evolution can be important facilitators of cognitive evolution.

15.
Genes Brain Behav ; 20(3): e12697, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32875689

RESUMEN

Understanding the basis of behavior requires dissecting the complex waves of gene expression that underlie how the brain processes stimuli and produces an appropriate response. In order to determine the dynamic nature of the neurogenomic network underlying mate choice, we use transcriptome sequencing to capture the female neurogenomic response in two brain regions involved in sensory processing and decision-making under different mating and social contexts. We use differential coexpression (DC) analysis to evaluate how gene networks in the brain are rewired when a female evaluates attractive and nonattractive males, greatly extending current single-gene approaches to assess changes in the broader gene regulatory network. We find the brain experiences a remarkable amount of network rewiring in the different mating and social contexts we tested. Further analysis indicates the network differences across contexts are associated with behaviorally relevant functions and pathways, particularly learning, memory and other cognitive functions. Finally, we identify the loci that display social context-dependent connections, revealing the basis of how relevant neurological and metabolic pathways are differentially recruited in distinct social contexts. More broadly, our findings contribute to our understanding of the genetics of mating and social behavior by identifying gene drivers behind behavioral neural processes, illustrating the utility of DC analysis in neurosciences and behavior.


Asunto(s)
Encéfalo/metabolismo , Redes Reguladoras de Genes , Poecilia/metabolismo , Conducta Sexual Animal , Animales , Femenino , Masculino , Memoria , Poecilia/fisiología , Conducta Social , Transcriptoma
16.
Exp Gerontol ; 146: 111218, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373711

RESUMEN

Cognitive ageing is the general process when certain mental skills gradually deteriorate with age. Across species, there is a pattern of a slower brain structure degradation rate in large-brained species. Hence, having a larger brain might buffer the impact of cognitive ageing and positively affect survival at older age. However, few studies have investigated the link between relative brain size and cognitive ageing at the intraspecific level. In particular, experimental data on how brain size affects brain function also into higher age is largely missing. We used 288 female guppies (Poecilia reticulata), artificially selected for large and small relative brain size, to investigate variation in colour discrimination and behavioural flexibility, at 4-6, 12 and 24 months of age. These ages are particularly interesting since they cover the life span from sexual maturation until maximal life length under natural conditions. We found no evidence for a slower cognitive ageing rate in large-brained females in neither initial colour discrimination nor reversal learning. Behavioural flexibility was predicted by large relative brain size in the youngest group, but the effect of brain size disappeared with increasing age. This result suggests that cognitive ageing rate is faster in large-brained female guppies, potentially due to the faster ageing and shorter lifespan in the large-brained selection lines. It also means that cognition levels align across different brain sizes with older age. We conclude that there are cognitive consequences of ageing that vary with relative brain size in advanced learning abilities, whereas fundamental aspects of learning can be maintained throughout the ecologically relevant life span.


Asunto(s)
Envejecimiento Cognitivo , Poecilia , Animales , Encéfalo , Cognición , Femenino , Tamaño de los Órganos
17.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268362

RESUMEN

Collective motion occurs when individuals use social interaction rules to respond to the movements and positions of their neighbors. How readily these social decisions are shaped by selection remains unknown. Through artificial selection on fish (guppies, Poecilia reticulata) for increased group polarization, we demonstrate rapid evolution in how individuals use social interaction rules. Within only three generations, groups of polarization-selected females showed a 15% increase in polarization, coupled with increased cohesiveness, compared to fish from control lines. Although lines did not differ in their physical swimming ability or exploratory behavior, polarization-selected fish adopted faster speeds, particularly in social contexts, and showed stronger alignment and attraction responses to multiple neighbors. Our results reveal the social interaction rules that change when collective behavior evolves.

18.
J Exp Biol ; 223(Pt 23)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33139392

RESUMEN

The evolution of collective behaviour has been proposed to have important effects on individual cognitive abilities. Yet, in what way they are related remains enigmatic. In this context, the 'distributed cognition' hypothesis suggests that reliance on other group members relaxes selection for individual cognitive abilities. Here, we tested how cognitive processes respond to evolutionary changes in collective motion using replicate lines of guppies (Poecilia reticulata) artificially selected for the degree of schooling behaviour (group polarization) with >15% difference in schooling propensity. We assessed associative learning in females of these selection lines in a series of cognitive assays: colour associative learning, reversal learning, social associative learning, and individual and collective spatial associative learning. We found that control females were faster than polarization-selected females at fulfilling a learning criterion only in the colour associative learning assay, but they were also less likely to reach a learning criterion in the individual spatial associative learning assay. Hence, although testing several cognitive domains, we found weak support for the distributed cognition hypothesis. We propose that any cognitive implications of selection for collective behaviour lie outside of the cognitive abilities included in food-motivated associative learning for visual and spatial cues.


Asunto(s)
Poecilia , Animales , Cognición , Condicionamiento Clásico , Señales (Psicología) , Femenino , Aprendizaje Inverso
19.
Biol Lett ; 16(9): 20200366, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32961091

RESUMEN

Human-directed play behaviour is a distinct behavioural feature of domestic dogs. But the role that artificial selection for contemporary dog breeds has played for human-directed play behaviour remains elusive. Here, we investigate how human-directed play behaviour has evolved in relation to the selection for different functions, considering processes of shared ancestry and gene flow among the different breeds. We use the American Kennel Club (AKC) breed group categorization to reflect the major functional differences and combine this with observational data on human-directed play behaviour for over 132 breeds across 89 352 individuals from the Swedish Dog Mentality Assessment project. Our analyses demonstrate that ancestor dogs already showed intermediate levels of human-directed play behaviour, levels that are shared with several modern breed types. Herding and Sporting breeds display higher levels of human-directed play behaviour, statistically distinguishable from Non-sporting and Toy breeds. Our results suggest that human-directed play behaviour played a role in the early domestication of dogs and that subsequent artificial selection for function has been important for contemporary variation in a behavioural phenotype mediating the social bond with humans.


Asunto(s)
Cruzamiento , Domesticación , Animales , Conducta Animal , Perros , Humanos
20.
Evolution ; 74(12): 2617-2628, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32840865

RESUMEN

The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The "cognitive buffer" hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the "cognitive buffer" hypothesis.


Asunto(s)
Evolución Biológica , Aves/crecimiento & desarrollo , Encéfalo/anatomía & histología , Longevidad , Animales , Aves/anatomía & histología , Tamaño de los Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA