Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(26): 5153-5163, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38895763

RESUMEN

Polymers of intrinsic microporosity exhibit a combination of high gas permeability and reasonable permselectivity, which makes them attractive candidates for gas separation membrane materials. The diffusional selective gas transport properties are connected to the molecular mobility of these polymers in the condensed state. Incoherent quasielastic neutron scattering was carried out on two polymers of intrinsic microporosity, PIM-EA-TB(CH3) and its demethylated counterpart PIM-EA-TB(H2), which have high Brunauer-Emmett-Teller surface area values of 1030 m2 g-1 and 836 m2 g-1, respectively. As these two polymers only differ in the presence of two methyl groups at the ethanoanthracene unit, the effect of methyl group rotation can be investigated solely. To cover a broad dynamic range, neutron time-of-flight was combined with neutron backscattering. The demethylated PIM-EA-TB(H2) exhibits a relaxation process with a weak intensity at short times. As the backbone is rigid and stiff this process was assigned to bend-and-flex fluctuations. This process was also observed for the PIM-EA-TB(CH3). A further relaxation process is found for PIM-EA-TB(CH3), which is the methyl group rotation. It was analyzed by a jump-diffusion in a three-fold potential considering also the fact that only a fraction of the present hydrogens in PIM-EA-TB(CH3) participate in the methyl group rotation. This analysis can quantitatively describe the q dependence of the elastic incoherent structure factor. Furthermore, a relaxation time for the methyl group rotation can be extracted. A high activation energy of 35 kJ mol-1 was deduced. This high activation energy evidences a strong hindrance of the methyl group rotation in the bridged PIM-EA-TB(CH3) structure.

2.
Phys Chem Chem Phys ; 25(26): 17639-17656, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366119

RESUMEN

Amphiphilic amino acids represent promising scaffolds for biologically active soft matter. In order to understand the bulk self-assembly of amphiphilic amino acids into thermotropic liquid crystalline phases and their biological properties a series of tyrosine ionic liquid crystals (ILCs) was synthesized, carrying a benzoate unit with 0-3 alkoxy chains at the tyrosine unit and a cationic guanidinium head group. Investigation of the mesomorphic properties by polarizing optical microscopy (POM), differential scanning calorimetry (DSC) and X-ray diffraction (WAXS, SAXS) revealed smectic A bilayers (SmAd) for ILCs with 4-alkoxy- and 3,4-dialkoxybenzoates, whereas ILCs with 3,4,5-trisalkoxybenzoates showed hexagonal columnar mesophases (Colh), while different counterions had only a minor influence. Dielectric measurements revealed a slightly higher dipole moment of non-mesomorphic tyrosine-benzoates as compared to their mesomorphic counterparts. The absence of lipophilic side chains on the benzoate unit was important for the biological activity. Thus, non-mesomorphic tyrosine benzoates and crown ether benzoates devoid of additional side chains at the benzoate unit displayed the highest cytotoxicities (against L929 mouse fibroblast cell line) and antimicrobial activity (against Escherichia coli ΔTolC and Staphylococcus aureus) and promising selectivity ratio in favour of antimicrobial activity.


Asunto(s)
Antiinfecciosos , Líquidos Iónicos , Cristales Líquidos , Animales , Ratones , Aminoácidos , Cristales Líquidos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Aminas , Tirosina , Benzoatos/química
3.
J Phys Chem B ; 124(39): 8728-8739, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32902985

RESUMEN

The phase behavior of two unsymmetrical triphenylene crown ether-based columnar liquid crystals bearing different lengths of alkyl chains, KAL465 and KAL468, was investigated using differential scanning calorimetry (DSC). A plastic crystalline (Cry), a columnar liquid crystalline (Colh), and an isotropic phase were observed along with two glass transitions in the Cry phase. The molecular mobility of the KAL compounds was further studied by a combination of broadband dielectric spectroscopy (BDS) and advanced calorimetric techniques. By the BDS investigations, three dielectric active relaxation processes were observed for both samples. At low temperatures, a γ-process in the Cry state was detected and is assigned to the localized fluctuations taking place in the alkyl chains. An α2-process takes place at higher temperatures in the Cry phase. An α3-process was found in the Colh mesophase. The advanced calorimetric techniques consist of fast scanning calorimetry (FSC) and specific heat spectroscopy employing temperature-modulated DSC and FSC. The advanced calorimetric investigations revealed that besides the α2-process in agreement with BDS, there is a second dynamic glass transition (α1-process), which is not observed by dielectric spectroscopy. The results are in good agreement with the glass transitions detected by DSC for this process. The temperature dependences of the relaxation rates of the α1-, α2-, and α3-processes are all different. Therefore, different molecular assignments for the relaxation processes are proposed. In addition to the relaxation processes, a conductivity contribution was explored by BDS for both KAL compounds. The conductivity contribution appears in both Cry and Colh phases, where the conductivity increases by ca. 1 order of magnitude at phase transition from the Cry to the hexagonal phase.

4.
Phys Chem Chem Phys ; 22(33): 18381-18387, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32794532

RESUMEN

Inelastic incoherent neutron time-of-flight scattering was employed to measure the low frequency density of states for a series of addition polynorbornenes with bulky side groups. The rigid main chain in combination with the bulky side groups give rise to a microporosity of these polymers in the solid state. The microporosity characterized by the BET surfaces area varies systematically in the considered series. Such materials have some possible application as active separation layer in gas separation membranes. All investigated materials show excess contributions to the Debye type density of states characteristic for glasses known as Boson peak. The maximum position of the Boson peak shifts to lower frequency values with increasing microporosity. Data for PIM-1 and Matrimid included for comparison are in good agreement to this dependency. This result supports the sound wave interpretation of the Boson peak.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...