Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Res Neurobiol ; 7: 100137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253555

RESUMEN

We established a longitudinal acute slice preparation of transgenic mouse optic nerve to characterize membrane properties and coupling of glial cells by patch-clamp and dye-filling, complemented by immunohistochemistry. Unlike in cortex or hippocampus, the majority of EGFP + cells in optic nerve of the hGFAP-EGFP transgenic mouse, a tool to identify astrocytes, were characterized by time and voltage dependent K+-currents including A-type K+-currents, properties previously described for NG2 glia. Indeed, the majority of transgene expressing cells in optic nerve were immunopositive for NG2 proteoglycan, whereas only a minority show GFAP immunoreactivity. Similar physiological properties were seen in YFP + cells from NG2-YFP transgenic mice, indicating that in optic nerve the transgene of hGFAP-EGFP animals is expressed by NG2 glia instead of astrocytes. Using Cx43kiECFP transgenic mice as another astrocyte-indicator revealed that astrocytes had passive membrane currents. Dye-filling showed that hGFAP-EGFP+ cells in optic nerve were coupled to none or few neighboring cells while hGFAP-EGFP+ cells in the cortex form large networks. Similarly, dye-filling of NG2-YFP+ and Cx43-CFP+ cells in optic nerve revealed small networks. Our work shows that identification of astrocytes in optic nerve requires distinct approaches, that the cells express membrane current patterns distinct from cortex and that they form small networks.

2.
eNeuro ; 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388443

RESUMEN

The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.

3.
Nat Commun ; 10(1): 4928, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666522

RESUMEN

Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.


Asunto(s)
Anomalías Craneofaciales/genética , Cardiopatías Congénitas/genética , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Animales , Corteza Cerebral/citología , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Cromosomas Humanos Par 9/metabolismo , Anomalías Craneofaciales/metabolismo , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Cardiopatías Congénitas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas , Discapacidad Intelectual/metabolismo , Mutación con Pérdida de Función , Masculino , Ratones , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Regulación hacia Arriba
4.
Front Behav Neurosci ; 13: 143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404254

RESUMEN

Exposure to stress during the early postnatal period (i.e., early life stress, ES) can impact brain physiology and modify individual variability in adult social behavior. Arginine vasopressin (AVP) and oxytocin (OXT) are two centrally released neuropeptides that are involved in shaping essential social behaviors, like aggression, social recognition, and social motivation. AVP and OXT modulate activity in brain regions important for the establishment of social behavior, and may be particularly sensitive to ES. In this review, we discuss whether ES alters the characteristics of the AVP- and OXT- systems in rodents, and whether these changes are associated with later alterations in aggression, social recognition, and social motivation. We have integrated causal studies indicating that (1) ES affects AVP/OXT, and (2) that changing AVP/OXT in affected regions alters social behavior. Although there is encouraging evidence that ES causes AVP- and OXT-system changes, and that these may mediate social behavior, a comprehensive understanding of the exact nature of AVP- and OXT changes and whether they are causal in establishing these behavioral disturbances needs further investigation. As there are indications that ES alters AVP- and OXT characteristics in humans as well, and that these may interact with adult predisposition to psychopathology with social dysfunction, future rodent studies may lay ground for a better understanding of such changes in humans. Ultimately, this may assist in developing therapeutic strategies to target ES effects on social behavior.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA