Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 6(10): e915, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27727244

RESUMEN

Cognitive impairment is a key feature of schizophrenia (SZ) and determines functional outcome. Nonetheless, molecular signatures in neuronal tissues that associate with deficits are not well understood. We conducted nasal biopsy to obtain olfactory epithelium from patients with SZ and control subjects. The neural layers from the biopsied epithelium were enriched by laser-captured microdissection. We then performed an unbiased microarray expression study and implemented a systematic neuropsychological assessment on the same participants. The differentially regulated genes in SZ were further filtered based on correlation with neuropsychological traits. This strategy identified the SMAD 5 gene, and real-time quantitative PCR analysis also supports downregulation of the SMAD pathway in SZ. The SMAD pathway has been important in multiple tissues, including the role for neurodevelopment and bone formation. Here the involvement of the pathway in adult brain function is suggested. This exploratory study establishes a strategy to better identify neuronal molecular signatures that are potentially associated with mental illness and cognitive deficits. We propose that the SMAD pathway may be a novel target in addressing cognitive deficit of SZ in future studies.


Asunto(s)
Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Mucosa Olfatoria/patología , Esquizofrenia/genética , Esquizofrenia/patología , Proteína Smad5/genética , Adulto , Biopsia , Disfunción Cognitiva/diagnóstico , Regulación hacia Abajo/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquizofrenia/diagnóstico
2.
Mol Psychiatry ; 21(3): 386-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26008737

RESUMEN

NMDA glutamate receptors have key roles in brain development, function and dysfunction. Regulatory roles of D-serine in NMDA receptor-mediated synaptic plasticity have been reported. Nonetheless, it is unclear whether and how neonatal deficits in NMDA-receptor-mediated neurotransmission affect adult brain functions and behavior. Likewise, the role of D-serine during development remains elusive. Here we report behavioral and electrophysiological deficits associated with the frontal cortex in Pick1 knockout mice, which show D-serine deficits in a neonatal- and forebrain-specific manner. The pathological manifestations observed in adult Pick1 mice are rescued by transient neonatal supplementation of D-serine, but not by a similar treatment in adulthood. These results indicate a role for D-serine in neurodevelopment and provide novel insights on how we interpret data of psychiatric genetics, indicating the involvement of genes associated with D-serine synthesis and degradation, as well as how we consider animal models with neonatal application of NMDA receptor antagonists.


Asunto(s)
Trastornos Mentales , Proteínas Nucleares/deficiencia , Serina/uso terapéutico , Transducción de Señal/genética , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Factores de Edad , Animales , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , Modelos Animales de Enfermedad , Agonistas de Dopamina/farmacología , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Conducta Exploratoria/efectos de los fármacos , Lóbulo Frontal/patología , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Trastornos Mentales/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/genética , Serina/metabolismo , Transducción de Señal/efectos de los fármacos , Natación/psicología , Factores de Tiempo
3.
Curr Mol Med ; 15(2): 138-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25732146

RESUMEN

Methodologies for generating functional neuronal cells directly from human fibroblasts [induced neuronal (iN) cells] have been recently developed, but the research so far has only focused on technical refinements or recapitulation of known pathological phenotypes. A critical question is whether this novel technology will contribute to elucidation of novel disease mechanisms or evaluation of therapeutic strategies. Here we have addressed this question by studying Tay-Sachs disease, a representative lysosomal storage disease, and Dravet syndrome, a form of severe myoclonic epilepsy in infancy, using human iN cells with feature of immature postmitotic glutamatergic neuronal cells. In Tay-Sachs disease, we have successfully characterized canonical neuronal pathology, massive accumulation of GM2 ganglioside, and demonstrated the suitability of this novel cell culture for future drug screening. In Dravet syndrome, we have identified a novel functional phenotype that was not suggested by studies of classical mouse models and human autopsied brains. Taken together, the present study demonstrates that human iN cells are useful for translational neuroscience research to explore novel disease mechanisms and evaluate therapeutic compounds. In the future, research using human iN cells with well-characterized genomic landscape can be integrated into multidisciplinary patient-oriented research on neuropsychiatric disorders to address novel disease mechanisms and evaluate therapeutic strategies.


Asunto(s)
Epilepsias Mioclónicas/metabolismo , Fibroblastos/metabolismo , Gangliósido G(M2)/metabolismo , Neuronas/metabolismo , Enfermedad de Tay-Sachs/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Potenciales de Acción/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Epilepsias Mioclónicas/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Lentivirus/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Enfermedad de Tay-Sachs/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción Genética , Transgenes
4.
Transl Psychiatry ; 3: e243, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23549417

RESUMEN

Quetiapine is an atypical neuroleptic with a pharmacological profile distinct from classic neuroleptics that function primarily via blockade of dopamine D2 receptors. In the United States, quetiapine is currently approved for treating patients with schizophrenia, major depression and bipolar I disorder. Despite its widespread use, its cellular effects remain elusive. To address possible mechanisms, we chronically treated mice with quetiapine, haloperidol or vehicle and examined quetiapine-specific gene expression change in the frontal cortex. Through microarray analysis, we observed that several groups of genes were differentially expressed upon exposure to quetiapine compared with haloperidol or vehicle; among them, Cdkn1a, the gene encoding p21, exhibited the greatest fold change relative to haloperidol. The quetiapine-induced downregulation of p21/Cdkn1a was confirmed by real-time polymerase chain reaction and in situ hybridization. Consistent with single gene-level analyses, functional group analyses also indicated that gene sets associated with cell cycle/fate were differentially regulated in the quetiapine-treated group. In cortical cell cultures treated with quetiapine, p21/Cdkn1a was significantly downregulated in oligodendrocyte precursor cells and neurons, but not in astrocytes. We propose that cell cycle-associated intervention by quetiapine in the frontal cortex may underlie a unique efficacy of quetiapine compared with typical neuroleptics.


Asunto(s)
Antipsicóticos/farmacología , Ciclo Celular/efectos de los fármacos , Dibenzotiazepinas/farmacología , Lóbulo Frontal/efectos de los fármacos , Haloperidol/farmacología , Esquizofrenia/metabolismo , Quinasas p21 Activadas/genética , Análisis de Varianza , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Lóbulo Frontal/metabolismo , Expresión Génica , Hibridación in Situ , Masculino , Metanfetamina/administración & dosificación , Ratones , Neuronas/metabolismo , Oligodendroglía/metabolismo , Análisis de Componente Principal , Fumarato de Quetiapina , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Esquizofrenia/inducido químicamente , Quinasas p21 Activadas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA