Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Article En | MEDLINE | ID: mdl-38858834

Stimuli-responsive materials have garnered substantial interest in recent years, particularly liquid crystal networks (LCNs) with sophisticatedly designed structures and morphing capabilities. Extensive efforts have been devoted to LCN structural designs spanning from two-dimensional (2D) to three-dimensional (3D) configurations and their intricate morphing behaviors through designed alignment. However, achieving microscale structures and large-area preparation necessitates the development of novel techniques capable of facilely fabricating LCN microstructures with precise control over both overall shape and alignment, enabling a 3D-to-3D shape change. Herein, a simple and cost-effective in-cell soft lithography (ICSL) technique is proposed to create LCN microstructures with customized shapes and predesigned morphing. The ICSL technique involves two sequential steps: fabricating the desired microstructure as the template by using the photopolymerization-induced phase separation (PIPS) method and reproducing the LCN microstructures through templating. Meanwhile, surface anchoring is employed to design and achieve molecular alignment, accommodating different deformation modes. With the proposed ICSL technique, cylindrical and spherical microlens arrays (CMLAs and SMLAs) have been successfully fabricated with stimulus-driven polarization-dependent focusing effects. This technique offers distinct advantages including high customizability, large-area production, and cost-effectiveness, which pave a new avenue for extensive applications in different fields, exemplified by adaptive soft micro-optics and photonics.

2.
Opt Express ; 32(7): 12528-12536, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38571073

Diffractive optical element is advantageous for miniaturization, arraying and integration of optical systems. They have been widely used in beam shaping, diffractive imaging, generating beam arrays, spectral optimization and other aspects. Currently, the vast majority of diffractive optics are not tunable. This limits the applicability and functionality of these devices. Here we report a tunable diffractive optical element controlled by light in the visible band. The diffractive optical element consists of a square gold microarray deposited on a deformable substrate. The substrate is made of a liquid crystal elastomer. When pumped by a 532 nm laser, the substrate is deformed to change the crystal lattice. This changes the far-field diffraction pattern of the device. The proposed concept establishes a light-controlled soft platform with great potential for tunable/reconfigurable photonic devices, such as filters, couplers, holograms and structural color displays.

3.
Opt Express ; 32(1): 625-638, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38175087

Conventionally, the fabrication of liquid crystal lenticular microlens arrays (LCLMLAs) is complicated and costly. Here, we demonstrate a one-step fabrication technique for LCLMLAs, which is prepared through the photopolymerization-induced phase separation in the LC/polymer composite. The LCLMLAs possess both polarization-dependent and electrically tunable focusing properties. Furthermore, we construct a 14-view 2D/3D switchable autostereoscopic display prototype based on a 2D LCD panel and the prepared LCLMLA, which has a viewing angle of 14° and a crosstalk of 46.2% at the optimal viewing zone. The proposed LCLMLAs have the merits of simple fabrication, large-scale production, and low cost.

4.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article En | MEDLINE | ID: mdl-38139387

Circular RNAs (circRNAs) are noncoding RNAs with diverse functions. However, most Mycobacterium tuberculosis (M.tb)-related circRNAs remain undiscovered. In this study, we infected THP-1 cells with virulent and avirulent M.tb strains and then sequenced the cellular circRNAs. Bioinformatic analysis predicted 58,009 circRNAs in all the cells. In total, 2035 differentially expressed circRNAs were identified between the M.tb-infected and uninfected THP-1 cells and 1258 circRNAs were identified in the virulent and avirulent M.tb strains. Further, the top 10 circRNAs were confirmed by Sanger sequencing, among which four circRNAs, namely circSOD2, circCHSY1, circTNFRSF21, and circDHTKD1, which were highly differentially expressed in infected cells compared with those in uninfected cells, were further confirmed by ring formation, specific primers, and RNase R digestion. Next, circRNA-miRNA-mRNA subnetworks were constructed, such as circDHTKD1/miR-660-3p/IL-12B axis. Some of the individual downstream genes, such as miR-660-3p and IL-12B, were previously reported to be associated with cellular defense against pathological processes induced by M.tb infection. Because macrophages are important immune cells and the major host cells of M.tb, these findings provide novel ideas for exploring the M.tb pathogenesis and host defense by focusing on the regulation of circRNAs during M.tb infection.


MicroRNAs , Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Macrophages/metabolism , RNA, Messenger/genetics
5.
Biosensors (Basel) ; 13(8)2023 Aug 17.
Article En | MEDLINE | ID: mdl-37622911

We demonstrated a low-cost, highly sensitive hybrid Ag-Cu substrate with enhanced absorption for the excitation laser beam via the nanosphere lithography technique. The hybrid Ag-Cu surface-enhanced Raman spectroscopy (SERS) substrate consists of a Cu nanoarray covered with Ag nanoparticles. The geometry of the deposited Cu nanoarray is precisely determined through a self-assembly nanosphere etching process, resulting in optimized absorption for the excitation laser beam. Further Raman enhancement is achieved by incorporating plasmonic hotspots formed by dense Ag nanoparticles, grown by immersing the prepared Cu nanoarray in a silver nitrate solution. The structural design enables analytical enhancement factor of hybrid Ag-Cu SERS substrates of 1.13 × 105. The Ag-Cu SERS substrates exhibit a highly sensitive and reproducible SERS activity, with a low detection limit of 10-13 M for Rhodamine 6G detection and 10-9 M for 4,4'-Bipyridine. Our strategy could pave an effective and promising approach for SERS-based rapid detection in biosensors, environmental monitoring and food safety.


Metal Nanoparticles , Nanospheres , Spectrum Analysis, Raman , Silver , Environmental Monitoring
6.
Nanoscale ; 14(48): 17921-17928, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36458471

Metasurfaces can enable polarization multiplexing of light so as to carry more information. Specific polarized light necessitates bulk polarizers and waveplates, which significantly increases the form size of metasurface devices. We propose an electrically programmable metasurface enabled by dual-frequency cholesteric liquid crystals (DF-CLCs) for simultaneous near- and far-field displays. Moreover, the integrated device can be electrically programmed to demonstrate 6 different optical images by engineering the DF-CLCs with frequency-modulated voltage pulses. Such programmable metasurfaces are potentially useful for many applications including information storage, displays, anti-counterfeiting, and so on.

7.
ACS Appl Mater Interfaces ; 14(48): 53981-53989, 2022 Dec 07.
Article En | MEDLINE | ID: mdl-36378812

Chirality induction, transfer, and manipulation have aroused great interest in achiral nanomaterials. Here, we demonstrate strong upconverted circularly polarized luminescence from achiral core-shell upconversion nanoparticles (UCNPs) via a plasmonic chiral metasurface-induced optical chirality transfer. The Yb3+-sensitized core-shell UCNPs with good dispersity exhibit intense upconversion luminescence of Tm3+ and Nd3+ through the energy transfer process. By spin-coating the core-shell UCNPs on this chiral metasurface, strong enhancement and circular polarization modulation of upconversion luminescence can be achieved due to resonant coupling between surface plasmons and upconversion nanoparticles. In the UCNPs-on-metasurface composite, a significant upconversion luminescence enhancement can be achieved with a maximum enhancement factor of 32.63 at 878 nm and an overall enhancement factor of 11.61. The luminescence dissymmetry factor of the induced upconverted circularly polarized luminescence can reach 0.95 at the emission wavelength of 895 nm. The UCNPs-on-metasurface composite yields efficient modulation for the emission intensity and polarization of UCNPs, paving new pathways to many potential applications in imaging, sensing, and anticounterfeiting fields.

8.
Nanomaterials (Basel) ; 12(7)2022 Apr 03.
Article En | MEDLINE | ID: mdl-35407320

Surface-enhanced Raman spectroscopy (SERS) has long been an ultrasensitive technique for trace molecule detection. However, the development of a sensitive, stable, and reproducible SERS substrate is still a challenge for practical applications. Here, we demonstrate a cost-effective, centimeter-sized, and highly reproducible SERS substrate using the nanosphere lithography technique. It consists of a hexagonally packed Ag metasurface on a SiO2/Au/Si substrate. A seconds-lasting etching process of a self-assembled nanosphere mask manipulates the geometry of the deposited Ag metasurface on the SiO2/Au/Si substrate, which attains the wavelength matching between the optical absorbance of the Ag/SiO2/Au/Si substrate and the excitation laser wavelength as well as the enhancement of Raman signals. By spin-coating a thin layer of graphene oxide on the substrate, a SERS performance with 1.1 × 105 analytical enhancement factor and a limit of detection of 10-9 M for melamine is achieved. Experimental results reveal that our proposed strategy could provide a promising platform for SERS-based rapid trace detection in food safety control and environmental monitoring.

9.
Article En | MEDLINE | ID: mdl-32257967

Mycobacterium tuberculosis (M. tb) can survive in the hostile microenvironment of cells by escaping host surveillance, but the molecular mechanisms are far from being fully understood. MicroRNAs might be involved in regulation of this intracellular process. By RNAseq of M. tb-infected PMA-differentiated THP-1 macrophages, we previously discovered down-regulation of miR-378d during M. tb infection. This study aimed to investigate the roles of miR-378d in M. tb infection of THP-1 cells by using a miR-378d mimic and inhibitor. First, M. tb infection was confirmed to decrease miR-378d expression in THP-1 and Raw 264.7 macrophages. Then, it was demonstrated that miR-378d mimic promoted, while its inhibitor decreased, M. tb survival in THP-1 cells. Further, the miR-378d mimic suppressed, while its inhibitor enhanced the protein production of IL-1ß, TNF-α, IL-6, and Rab10 expression. By using siRNA of Rab10 (siRab10) to knock-down the Rab10 gene in THP-1 with or without miR-378d inhibitor transfection, Rab10 was determined to be a miR-378d target during M. tb infection. In addition, a dual luciferase reporter assay with the Rab10 wild-type sequence and mutant for miR-378d binding sites confirmed Rab10 as the target of miR-378d associated with M. tb infection. The involvement of four signal pathways NF-κB, P38, JNK, and ERK in miR-378d regulation was determined by detecting the effect of their respective inhibitors on miR-378d expression, and miR-378d inhibitor on activation of these four signal pathways. As a result, activation of the NF-κB signaling pathway was associated with the down-regulation of miR-378d. In conclusion, during M. tb infection of macrophages, miR-378d was down-regulated and functioned on decreasing M. tb intracellular survival by targeting Rab10 and the process was regulated by activation of the NF-κB and induction of pro-inflammatory cytokines IL-1ß, TNF-α, IL-6. These findings shed light on further understanding the defense mechanisms in macrophages against M. tb infection.


MicroRNAs , Mycobacterium tuberculosis , Cytokines/metabolism , Down-Regulation , Macrophages/metabolism , MicroRNAs/genetics , Mycobacterium tuberculosis/metabolism , NF-kappa B/metabolism
...