Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cartilage ; : 19476035231207778, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37997349

RESUMEN

OBJECTIVE: MicroRNAs (miRNAs) play a key role in the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes. Our previous study found that novel-miR-81 can relieve osteoarthritis, but its role in chondrogenic differentiation of BMSCs remains unclear. The purpose of this study was to explore the role of novel-miR-81 in chondrogenic differentiation of BMSCs. METHODS: We used a model in which transforming growth factor (TGF)-ß3-induced BMSCs differentiation into chondrocytes. We detected the expression Sox9, Collagen Ⅱ, Aggrecan, novel-miR-81, and Rac2 by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot was performed to detect the expression of Sox9, Collagen Ⅱ, and Rac2. Dual-luciferase reporter gene assay confirmed that the association between novel-miR-81 and Rac2. In addition, the ectopic chondrocyte differentiation of BMSCs was performed subcutaneously in nude mice. The effect of novel-miR-81 and Rac2 on ectopic chondrogenic differentiation of BMSCs was determined by immunohistochemical staining. RESULTS: Novel-miR-81 upregulated in chondrogenic differentiation of BMSCs. Rac2 was a key target of novel-miR-81. Mimic novel-miR-81 and siRac2 upregulated the expression of Sox9, Collagen Ⅱ, and Aggrecan. CONCLUSION: Novel-miR-81 promotes the chondrocytes differentiation of BMSCs by inhibiting the expression of target gene Rac2, which provides potential targets for BMSCs transplantation to repair cartilage defects.

2.
Cartilage ; : 19476035231168387, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37086007

RESUMEN

OBJECTIVE: Functional polymorphisms of interleukin 16 (IL16) have been reported to be closely related to the risk of osteoarthritis (OA). However, how IL16 affects OA remains unclear. In this study, the role of IL16 in OA and the possible mechanisms were examined. METHODS: We established a meniscal/ligament injury (MLI) post-traumatic OA model in Sprague Dawley rats and an IL1ß-induced ADTC5 cells OA model. We detected the expression of IL16, novel-miR-81, MMP3, and MMP13 by quantitative real-time polymerase chain reaction. Western blot was performed to detect the expression of IL16, MMP3, and MMP13. The association between IL16 and novel-miR-81 was confirmed by luciferase reporter assay. Hematoxylin and eosin staining, Safranin O and Fast Green staining, and immunohistochemical staining were performed to clarify the effect of intra-articular injection of novel-miR-81 agomir in rats OA model. RESULTS: IL16 was upregulated in OA model. Knockdown of IL16 and overexpression of novel-miR-81 downregulated the expression of MMP3 and MMP13. Importantly, IL16 was a key target of novel-miR-81. Intra-articular injection of novel-miR-81 agomir could attenuate OA progression in rats OA model. CONCLUSION: Novel-miR-81 targeted IL16 to relieve OA, suggesting that novel-miR-81and IL16 may be new therapeutic targets for OA.

3.
Anat Rec (Hoboken) ; 306(8): 2185-2198, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36691370

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate into chondrocytes. In the differentiation of BMSCs into chondrocytes, micro-RNAs (miRNAs) play an important role. rno-miR-90 is a new miRNA discovered by our research team, and its role in chondrogenic differentiation of BMSCs is unknown. This study aimed to investigate whether rno-miR-90 could promote chondrogenic differentiation of BMSCs by regulating secreted protein acidic and rich in cysteine-related modular calcium binding 2 (Smoc2). First, BMSCs chondroblast differentiation was successfully induced in vitro by classical induction method of transforming growth factor (TGF)-ß3. On this basis, we transfected rno-miR-90 mimic and inhibitor, and confirmed that rno-miR-90 mimic could promote the differentiation of BMSCs into chondrocytes by real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. In addition, we demonstrated that Smoc2 was a target gene of rno-miR-90 by dual-luciferase reporter assay, and confirmed that rno-miR-90 mimic could inhibit the expression of Smoc2 by RT-qPCR and western blotting. In order to further prove the targeting relationship between rno-miR-90 and Smoc2, we constructed three interfering fragments of Smoc2, and proved that silencing Smoc2 could promote the differentiation of BMSCs into chondrocytes at the transcriptional and protein levels. Finally, we constructed a carrier scaffold for ectopic chondrogenic differentiation in vivo, and confirmed that rno-miR-90 mimic and siSmoc2 could promote chondrogenic differentiation of BMSCs by Alcian blue staining and immunohistochemistry. In summary, our results suggested that rno-miR-90 could promote chondrogenic differentiation of BMSCs by down-regulating the expression of Smoc2. rno-miR-90 mimic and Smoc2 may be therapeutic targets of osteoarthritis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Calcio/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Células Cultivadas , Diferenciación Celular/fisiología , Condrocitos , MicroARNs/genética , MicroARNs/metabolismo , Condrogénesis/fisiología , Células de la Médula Ósea/metabolismo
4.
Cell Reprogram ; 24(1): 9-20, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180001

RESUMEN

Bone marrow mesenchymal stem cells (BMSCs) differentiate into chondrocytes under appropriate conditions, providing a method for the treatment of bone- and joint-related diseases. Previously, we found that mulberry (Morus nigra) promoted the chondrogenic differentiation of BMSCs. Although the mechanism of action and active ingredients remain unknown, several studies describe the involvement of micro-RNAs. We obtained BMSCs from the bone marrow of Sprague Dawley rats. Cell Counting Kit-8 assays showed that maclurin (25 µg/mL) treatment was not toxic to BMSCs, and compared with untreated controls, maclurin upregulated Sox9 and Col2a expression. Quantitative-PCR revealed that miR-203a-3p levels decreased significantly during chondrogenic differentiation of BMSCs promoted by maclurin. Compared with treatment with an miR-203a-3p inhibitor, miR-203a-3p mimic inhibited expression of Sox9 and Col2a as evidenced by immunofluorescence staining and Western blotting. Smad1 was identified as a key target gene of miR-203a-3p according to biological-prediction software, and miR-203a-3p negatively regulated its transcription and translation in the dual-luciferase reporter gene assay and Western blotting. Sox9 and Col2a expression was downregulated following transfection of short interfering Smad1 (siSmad1) plasmids into BMSCs. We elucidated how maclurin promotes the chondrogenic differentiation of BMSCs by regulating miR-203a-3p/Smad1, which provides a strategy for future exploration of osteoarthritis therapy through cell transplantation.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Animales , Células de la Médula Ósea , Diferenciación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Lectinas de Plantas , Ratas , Ratas Sprague-Dawley , Proteína Smad1/metabolismo
5.
Anat Rec (Hoboken) ; 304(3): 531-540, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32589363

RESUMEN

MicroRNAs (miRNAs) participate in the repair of skin trauma. Our previous study indicated that loureirin A promoted hair follicle stem cells (HFSCs) to repair skin epidermis. However, the mechanism of miRNA-mediated regulation of loureirin A-induced HFSC differentiation remained to be explored. In the present study, HFSCs from rat vibrissa were identified by immunofluorescence in vitro. Microarray and quantitative real time polymerase chain reaction analyses demonstrated that miR-203a-3p was upregulated in differentiated HFSCs induced by loureirin A. The expression of cytoskeletal keratin (CK) 5 and involucrin was promoted by miR-203a-3p mimics while repressed by a miR-203a-3p inhibitor. Smad1 was identified as a key target of miR-203a-3p using target prediction tools. Luciferase reporter gene test confirmed a special target association between miR-203a-3p and Smad1. Short interfering Smad1 was transfected into HFSCs, and the expression levels of CK5 and involucrin were upregulated. Thus, it can be inferred that miR-203a-3p negatively regulated the expression of Smad1 and promoted the differentiation of loureirin A-induced HFSCs. Bone morphogenetic protein (BMP) signal inhibition and Wnt activation coregulate skin injury repair. BMP/Smad1 signaling is involved in maintaining the characteristics of HFSCs and inhibiting their differentiation. Our results showed that miR-203a-3p reduces Smad1 to release BMP inhibition. Taken together, miR-203a-3p/Smad1 is a potential therapeutic molecular target in skin wound healing, and may play an active role in wound repair and regenerative medicine.


Asunto(s)
Diferenciación Celular/fisiología , Chalconas/farmacología , Folículo Piloso/metabolismo , MicroARNs/metabolismo , Proteína Smad1/metabolismo , Células Madre/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Folículo Piloso/efectos de los fármacos , Masculino , MicroARNs/genética , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Células Madre/efectos de los fármacos , Proteínas Wnt/metabolismo
6.
Chem Asian J ; 13(20): 3063-3072, 2018 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30094925

RESUMEN

The nucleation and growth of SAPO-34 crystals with triethylamine (TEA) as a single template was monitored with ex situ time-resolved characterization methods. The investigation focused on the evolution of the intermediate phases at different crystallization stages of SAPO-34. The morphology transformation of the intermediate phases at different crystallization times revealed the unique self-assembly process of the sub-crystals. The cubic SAPO-34 crystals can be constructed from eight pyramidal subunits. Additionally, the construction order of cha cages and double-six-membered ring (d6r) units in the initial crystallization stage was determined. The appearance of cha cages prior to d6r units can be attributed to the structure-directing effect of protonated TEA, which is charge balanced with the negative charge of the framework from Si incorporation. Further analysis showed that Si species were incorporated into the framework by direct participation in the initial crystallization stage and substitution for framework P atoms during the later stage.

7.
Brain Behav Immun ; 71: 116-132, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29627530

RESUMEN

Activation of the neonatal immune system may contribute to deficits in neuronal plasticity. We have reported that neonatal vaccination with a hepatitis B vaccine (HBV) transiently impairs mood status and spatial memory involving a systemic T helper (Th) 2 bias and M1 microglial activation. Here, an EE induced microglial anti-inflammatory M2 polarization, as evidenced by selectively enhanced expression of the Arginase1 gene (Arg-1) in the hippocampus. Interestingly, knock-down of the Arg-1 gene prevented the effects of EE on restoring the dendritic spine density. Moreover, levels of the Th1-derived cytokine IFN-gamma (IFN-γ) were elevated in the choroid plexus (CP), which is the interface between the brain and the periphery. IFN-γ-blocking antibodies blunted the protective effects of an EE on spine density and LTP. Furthermore, levels of complement proteins C1q and C3 were elevated, and this elevation was associated with synapse loss induced by the HBV, whereas an EE reversed the effects of the HBV. Similarly, blockade of C1q activation clearly prevented synaptic pruning by microglia, LTP inhibition and memory deficits in hepatitis B-vaccinated mice. Together, the EE-induced increase in IFN-γ levels in the CP may disrupt systemic immunosuppression related to HBV via an IFN-γ/Arg-1/complement-dependent pathway.


Asunto(s)
Vacunas contra Hepatitis B/efectos adversos , Plasticidad Neuronal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos , Animales , Animales Recién Nacidos , Arginasa/efectos de los fármacos , Arginasa/genética , Citocinas , Ambiente , Femenino , Hepatitis B , Hipocampo/efectos de los fármacos , Interferón gamma/efectos de los fármacos , Interferón gamma/genética , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/inmunología , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Microglía/inmunología , Neurogénesis/inmunología , Plasticidad Neuronal/fisiología , Células Th2/efectos de los fármacos , Vacunación/efectos adversos
8.
Chem Commun (Camb) ; 51(99): 17580-3, 2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-26478925

RESUMEN

The utilization of lignin as a fuel precursor has attracted attention, and a novel and facile process has been developed for one-pot conversion of lignin into cycloalkanes and alkanes with Ni catalysts under moderate conditions. This cascade hydrodeoxygenation approach may open the route to a new promising technique for direct liquefaction of lignin to hydrocarbons.


Asunto(s)
Hidrocarburos/química , Lignina/química , Parafina/química , Catálisis , Microscopía Electrónica de Rastreo , Níquel/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...