Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Microbiol ; 15: 1387623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966392

RESUMEN

Emerging viruses, such as filoviruses (Ebola, Marburg), SARS and MERS coronaviruses, and Zika, pose significant threats to global public health, particularly for individuals with co-morbidities. To address these challenges, this review article explores multidisciplinary strategies for combatting emerging viruses. We emphasize the importance of developing accurate diagnostics, innovative therapeutic gene and vaccine delivery systems, and long-acting nanotherapeutics. These approaches are designed to enhance the safety and efficacy of treatments against these deadly pathogens. We discuss the collaborative efforts of virologists, geneticists, formulation scientists, clinicians, immunologists, and medicinal chemists in advancing these therapeutic modalities.

2.
Trop Med Infect Dis ; 9(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38922048

RESUMEN

Echinococcosis poses a significant concern in the fields of public health and veterinary care as it can be transmitted between animals and humans. The primary endemic subtypes are cystic echinococcosis (CE) and alveolar echinococcosis (AE), which result from infestation by Echinococcus granulosus and Echinococcus multilocularis, respectively. A prominent epidemic of echinococcosis greatly affects the Tibet Autonomous Region (TAR) in China. A new technique called the loop-mediated isothermal amplification-lateral flow dipstick (LAMP-LFD) test is introduced in this research to differentiate between E. granulosus and E. multilocularis using their repetitive genetic sequences. The test is characterized by its portable nature, simple operation, quick result production, high sensitivity, and low susceptibility to aerosol contamination. The LAMP-LFD method demonstrated an exceptional minimal detection limit, reaching levels as low as approximately 1 fg/µL (femtogram per microliter) of genomic DNA. The assay's specificity was assessed, and no cross-reactivity was seen. A total of 982 dog fecal samples were collected from 54 counties in the TAR region between July 2021 and June 2022. The established method underwent validation using a commercially available ELISA kit. The agreement rate between the LAMP-LFD and ELISA methods was 97.25%, with a sensitivity of 96.05% and a specificity of 97.35%. The assay described in this study improves specificity by using a double-labeled probe, and it reduces the risk of false-positive results caused by aerosol contamination through the use of a sealed device. This makes it a suitable choice for quickly and accurately identifying the two main types of Echinococcus in field settings.

3.
Microbiol Spectr ; 12(7): e0399823, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38809001

RESUMEN

Toxoplasma gondii, which causes toxoplasmosis, is prevalent in warm-blooded animals, such as cats, dogs, and humans. T. gondii causes economic losses to livestock production and represents a potential risk to public health. Dogs and cats are common hosts in the epidemiology of toxoplasmosis. The current molecular diagnostic tools for T. gondii infection require high technical skills, a laboratory environment, and complex instruments. Herein, we developed a recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a (Cas12a) assay to detect T. gondii. The lowest limit of detection of the assay was 31 copies/µL for the T. gondii B1 gene. In addition, we established a visual RPA-CRISPR/Cas12a lateral flow band assay (RPA-CRISPR/Cas12a-LFA) combined with a digital visualization instrument, which minimized the problem of false-negative results for weakly positive samples and avoided misinterpretation of the results by the naked eye, making the LFA assay results more accurate. The assay established in this study could identify T. gondii within 55 min with high accuracy and sensitivity, without cross-reaction with other tested parasites. The developed assay was validated by establishing a mouse model of toxoplasmosis. Finally, the developed assay was used to investigate the prevalence of T. gondii in stray cats and dogs in Zhejiang province, Eastern China. The positive rates of T. gondii infection in stray cats and dogs were 8.0% and 4.0%, respectively. In conclusion, the RPA-CRISPR/Cas12a-LFA is rapid, sensitive, and accurate for the early diagnosis of T. gondii, showing promise for on-site surveillance. IMPORTANCE: Toxoplasma gondii is a virulent pathogen that puts millions of infected people at risk of chronic disease reactivation. Hosts of T. gondii are distributed worldwide, and cats and dogs are common hosts of T. gondii. Therefore, rapid diagnosis of early T. gondii infection and investigation of its prevalence in stray dogs and cats are essential. Here, we established a visual recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 12a-assay combined with a lateral flow band assay and a digital visualization instrument. Detailed analyses found that the assay could be used for the early diagnosis of T. gondii without false-negative results. Moreover, we detected the prevalence of T. gondii in stray cats and dogs in Zhejiang province, China. Our developed assay provides technical support for the early diagnosis of T. gondii and could be applied in prevalence surveys of T. gondii in stray dogs and cats.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades de los Gatos , Enfermedades de los Perros , Toxoplasma , Toxoplasmosis Animal , Gatos , Animales , Perros , Toxoplasma/genética , Toxoplasma/aislamiento & purificación , Enfermedades de los Perros/parasitología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/diagnóstico , Enfermedades de los Gatos/parasitología , Enfermedades de los Gatos/epidemiología , Enfermedades de los Gatos/diagnóstico , China/epidemiología , Toxoplasmosis Animal/parasitología , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/diagnóstico , Ratones , Sensibilidad y Especificidad , Proteínas Asociadas a CRISPR/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas de Diagnóstico Molecular/métodos , Proteínas Bacterianas , Endodesoxirribonucleasas
4.
Parasit Vectors ; 17(1): 81, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389080

RESUMEN

BACKGROUND: Timely diagnosis of Toxoplasma gondii infection is necessary to prevent and control toxoplasmosis transmission. The gold immunochromatographic assay (GICA) is a means of rapidly detecting pathogen in samples. GICA-based diagnostic methods have been developed to accurately detect pathogens with high sensitivity and specificity, and their application in T. gondii diagnosis is expected to yield good results. METHODS: Colloidal gold test strips were produced using T. gondii C-terminal truncated apical membrane antigen 1 (AMA1C). Colloidal gold-AMA1C and colloidal gold-murine protein conjugate were synthesized under optimal conditions. A nitrocellulose membrane was treated with AMA1C and goat anti-mouse antibody as the test line and control line, respectively. In total, 90 cat serum samples were tested using AMA1C-GICA and a commercial enzyme linked immunosorbent assay (ELISA) kit. The GICA results were digitally displayed using a portable colloidal gold immunochromatographic test strip analyzer (HMREADER). The sensitivity, specificity, and stability of AMA1C-GICA were assessed, and this was then used to examine clinical samples, including 203 human sera, 266 cat sera, and 81 dog sera. RESULTS: AMA1C-GICA had a detection threshold of 1:32 for T. gondii-positive serum. The GICA strips specifically detected T. gondii antibodies and exhibited no reactivity with Plasmodium vivax, Paragonimus kellicotti, Schistosoma japonicum, Clonorchis sinensis, and Schistosoma mansoni. Consequently, 15 (16.7%) positive samples were detected using the AMA1C-GICA and commercial ELISA kits for each of the assays. The receiver-operating characteristic curve showed that GICA had a relative sensitivity of 85.3% and specificity of 92%, with an area under the curve of 98%. After analyzing clinical samples using HMREADER, 1.2%-23.4% of these samples were found to be positive for T. gondii. CONCLUSIONS: This study presents a novel assay that enables timely and efficient detection of serum antibodies against T. gondii, thereby allowing for its early clinical diagnosis. Furthermore, the integration of digital detection using HMREADER can enhance the implementation of GICA.


Asunto(s)
Toxoplasma , Toxoplasmosis , Ratones , Animales , Perros , Humanos , Cromatografía de Afinidad/métodos , Sensibilidad y Especificidad , Inmunoensayo/métodos , Toxoplasmosis/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antihelmínticos , Oro Coloide/análisis , Oro Coloide/química
5.
BMC Vet Res ; 19(1): 229, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37924072

RESUMEN

BACKGROUND: Diseases caused by Toxoplasma gondii (T. gondii) have introduced serious threats to public health. There is an urgent need to develop a rapid detection method for T. gondii infection in cats, which are definitive hosts. Recombinant apical membrane antigen 1 (rAMA1) was produced in a prokaryotic expression system and used as the detection antigen. The aim of this study was to evaluate and optimize a reliable indirect enzyme-linked immunosorbent assay (iELISA) method based on rAMA1 for the detection of antibodies against T. gondii in cats. RESULTS: The rAMA1-iELISA method was developed and optimized by the chessboard titration method. There were no cross-reactions between T. gondii-positive cat serum and positive serum for other pathogens, indicating that rAMA1-iELISA could only detect T. gondii in most cases. The lowest detection limit of rAMA1-iELISA was 1:3200 (dilution of positive serum), and the CV of repeated tests within batches and between batches were confirmed to be less than 10%. The results of 247 cat serum samples detected by rAMA1-iELISA (kappa value = 0.622, p < 0.001) were in substantial agreement with commercial ELISA. The ROC curve analysis revealed the higher overall check accuracy of rAMA1-iELISA (sensitivity = 91.7%, specificity = 93.6%, AUC = 0.956, 95% CI 0.905 to 1.000) than GRA7-based iELISA (sensitivity = 91.7%, specificity = 85.5%, AUC = 0.936, 95% CI 0.892 to 0.980). Moreover, the positive rate of rAMA1-iELISA (6.5%, 16/247) was higher than that of GRA7-based iELISA (3.6%, 9/247) and that of commercial ELISA kit (4.9%, 12/247). CONCLUSION: The iELISA method with good specificity, sensitivity, and reproducibility was established and can be used for large-scale detection of T. gondii infection in clinical cat samples.


Asunto(s)
Enfermedades de los Gatos , Toxoplasma , Toxoplasmosis Animal , Gatos , Animales , Antígenos de Protozoos , Sensibilidad y Especificidad , Reproducibilidad de los Resultados , Anticuerpos Antiprotozoarios , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Toxoplasmosis Animal/diagnóstico , Enfermedades de los Gatos/diagnóstico
6.
PLoS Negl Trop Dis ; 17(9): e0011626, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37773953

RESUMEN

BACKGROUND: Artesunate (ART) has been reported to have an antifibrotic effect in various organs. The underlying mechanism has not been systematically elucidated. We aimed to clarify the effect of ART on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in an experimentally infected rodent model and the potential underlying mechanisms. METHODS: The effect of ART on hepatic stellate cells (HSCs) was assessed using CCK-8 and Annexin V-FITC/PI staining assays. The experimental model of liver fibrosis was established in the Mongolian gerbil model infected with S. japonicum cercariae and then treated with 20 mg/kg or 40 mg/kg ART. The hydroxyproline (Hyp) content, malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities in liver tissue were measured and histopathological changes of liver tissues were observed. Whole-transcriptome RNA sequencing (RNA-seq) of the liver tissues was performed. Differentially expressed genes (DEGs) were identified using bioinformatic analysis and verified by quantitative PCR (qPCR) and western blot assay. RESULTS: ART significantly inhibited the proliferation and induce the apoptosis of HSCs in a dose-dependent manner. In vivo, Hyp content decreased significantly in the ART-H group compared to the model (MOD) group and GPX activity was significantly higher in the ART-H group than in the MOD group. Besides, ART treatment significantly reduced collagen production (p <0.05). A total of 158 DEGs and 44 differentially expressed miRNAs related to ART-induced anti-schistosomiasis liver fibrosis were identified. The qPCR and western blot results of selected DEGs were consistent with the sequencing results. These DEGs were implicated in key pathways such as immune and inflammatory response, integrin-mediated signaling and toll-like receptor signaling pathways. CONCLUSION: ART is effective against liver fibrosis using Mongolian gerbil model induced by S. japonicum infection. We identified host candidate regulators of schistosomiasis-induced liver fibrosis in response to ART through transcriptomics approach.

7.
Front Immunol ; 14: 1197467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37475861

RESUMEN

COVID-19 is an inflammatory disease with multiple organs involved, mainly respiratory symptoms. Although the majority of patients with COVID-19 present with a mild to moderate self-limited course of illness, about 5-10% of patients with inflammatory disorders in severe COVID-19 have life-threatening progression. With the exception of a few drugs that have shown outstanding anti-COVID-19 effects, the efficacy of most drugs remains controversial. An increasing number of animal and clinical studies have shown that neuromodulation has a significant effect on reducing inflammatory markers of COVID-19, thus exerting an effective neuroimmunotherapeutic value. Currently, the main neuroimmunomodulatory measures effective against COVID-19 include vagus nerve stimulation, electroacupuncture, and cholinergic drugs. In this review, we will summarize the research progress of potential value of this neuroimmunotherapy measures for COVID-19 and elaborate its efficacies and mechanisms, in order to provide reliable evidence for clinical intervention.


Asunto(s)
COVID-19 , Electroacupuntura , Estimulación del Nervio Vago , Animales , COVID-19/terapia , SARS-CoV-2 , Colinérgicos
8.
Chem Commun (Camb) ; 59(65): 9818-9831, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37497715

RESUMEN

Transient regulation of gel properties by chemical reaction networks (CRNs) represents an emerging and effective strategy to program or temporally control the structures, properties, and functions of gel materials in a self-regulated manner. CRNs provide significant opportunities to construct complex or sustainable gels with excellent dynamic features, thus expanding the application scope of these materials. CRN-based methods for transiently regulating the gel properties are receiving increasing attention, and the related fields are worth further studying. This feature article focuses on the CRN-mediated transient regulation of six properties of gels, which are transient gelation, transient liquefaction of gels, transient assembly of macroscopic gels, temporary actuation of gels, transient healing ability of kinetically inert gels, and cascade reaction-based self-reporting of external stimuli. Recent advances that showcase the six properties of gels controlled by CRNs are featured, the characterization and structural elucidation of gels are detailed, and the significance, achievements, and expectations of this field are discussed. The strategy of transient regulation of gel properties via CRNs is potentially useful for building the next generation of adaptive functional materials.

9.
Front Cell Infect Microbiol ; 13: 1224155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492530

RESUMEN

An accumulating body of evidence suggests that the bacterium Akkermansia muciniphila exhibits positive systemic effects on host health, mainly by improving immunological and metabolic functions, and it is therefore regarded as a promising potential probiotic. Recent clinical and preclinical studies have shown that A. muciniphila plays a vital role in a variety of neuropsychiatric disorders by influencing the host brain through the microbiota-gut-brain axis (MGBA). Numerous studies observed that A. muciniphila and its metabolic substances can effectively improve the symptoms of neuropsychiatric disorders by restoring the gut microbiota, reestablishing the integrity of the gut mucosal barrier, regulating host immunity, and modulating gut and neuroinflammation. However, A. muciniphila was also reported to participate in the development of neuropsychiatric disorders by aggravating inflammation and influencing mucus production. Therefore, the exact mechanism of action of A. muciniphila remains much controversial. This review summarizes the proposed roles and mechanisms of A. muciniphila in various neurological and psychiatric disorders such as depression, anxiety, Parkinson's disease, Alzheimer's disease, multiple sclerosis, strokes, and autism spectrum disorders, and provides insights into the potential therapeutic application of A. muciniphila for the treatment of these conditions.


Asunto(s)
Akkermansia , Trastornos Mentales , Enfermedades del Sistema Nervioso , Akkermansia/fisiología , Humanos , Animales , Enfermedades Neurodegenerativas/microbiología , Enfermedades Neurodegenerativas/patología , Trastornos Mentales/microbiología , Eje Cerebro-Intestino , Microbioma Gastrointestinal , Inflamación/patología , Enfermedades del Sistema Nervioso/microbiología , Enfermedades del Sistema Nervioso/patología
10.
Infect Dis Poverty ; 12(1): 60, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322556

RESUMEN

BACKGROUND: Toxoplasma gondii is an obligate intracellular apicomplexan parasite and is responsible for zoonotic toxoplasmosis. It is essential to develop an effective anti-T. gondii vaccine for the control of toxoplasmosis, and this study is to explore the immunoprotective effects of a live attenuated vaccine in mice and cats. METHODS: First, the ompdc and uprt genes of T. gondii were deleted through the CRISPR-Cas9 system. Then, the intracellular proliferation and virulence of this mutant strain were evaluated. Subsequently, the immune responses induced by this mutant in mice and cats were detected, including antibody titers, cytokine levels, and subsets of T lymphocytes. Finally, the immunoprotective effects were evaluated by challenge with tachyzoites of different strains in mice or cysts of the ME49 strain in cats. Furthermore, to discover the effective immune element against toxoplasmosis, passive immunizations were carried out. GraphPad Prism software was used to conduct the log-rank (Mantel-Cox) test, Student's t test and one-way ANOVA. RESULTS: The RHΔompdcΔuprt were constructed by the CRISPR-Cas9 system. Compared with the wild-type strain, the mutant notably reduced proliferation (P < 0.05). In addition, the mutant exhibited virulence attenuation in both murine (BALB/c and BALB/c-nu) and cat models. Notably, limited pathological changes were found in tissues from RHΔompdcΔuprt-injected mice. Furthermore, compared with nonimmunized group, high levels of IgG (IgG1 and IgG2a) antibodies and cytokines (IFN-γ, IL-4, IL-10, IL-2 and IL-12) in mice were detected by the mutant (P < 0.05). Remarkably, all RHΔompdcΔuprt-vaccinated mice survived a lethal challenge with RHΔku80 and ME49 and WH6 strains. The immunized sera and splenocytes, especially CD8+ T cells, could significantly extend (P < 0.05) the survival time of mice challenged with the RHΔku80 strain compared with naïve mice. In addition, compared with nonimmunized cats, cats immunized with the mutant produced high levels of antibodies and cytokines (P < 0.05), and notably decreased the shedding numbers of oocysts in feces (95.3%). CONCLUSIONS: The avirulent RHΔompdcΔuprt strain can provide strong anti-T. gondii immune responses, and is a promising candidate for developing a safe and effective live attenuated vaccine.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Animales , Gatos , Ratones , Toxoplasma/genética , Linfocitos T CD8-positivos , Vacunas Atenuadas , Proteínas Protozoarias/genética , Citocinas , Ratones Endogámicos BALB C , Anticuerpos Antiprotozoarios , Toxoplasmosis Animal/prevención & control
11.
Front Microbiol ; 14: 1326837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38420214

RESUMEN

Acute pancreatitis is caused by trypsinogen activation in acinar cells caused by various injury forms (gallstone, high triglycerides, alcohol, etc.). Viral pancreatitis is a clinically rare disease type, which is easily neglected by clinicians and causes serious adverse consequences. Viral pancreatitis involves the entry of viruses into pancreatic cells, triggering inflammation, immune response activation, and enzymatic autodigestion, leading to tissue damage and potential complications. At present, there are few available reports on viral pancreatitis, most of which are case reports. This review brings attention to clinicians by describing the incidence of viral pancreatitis to enhance clinical understanding and patient care.

12.
PLoS Negl Trop Dis ; 16(10): e0010814, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36206314

RESUMEN

Echinococcosis is a parasitic disease caused by the metacestodes of Echinococcus spp. The disease has a long latent period and is largely underdiagnosed, partially because of the lack of effective early diagnostic approaches. Using liquid chromatography-mass spectrometry, we profiled the serum-derived extracellular vesicles (EVs) of E. multilocularis-infected mice and identified three parasite-origin proteins, thioredoxin peroxidase 1 (TPx-1), transitional endoplasmic reticulum ATPase (TER ATPase), and 14-3-3, being continuously released by the parasites into the sera during the infection via EVs. Using ELISA, both TPx-1 and TER ATPase were shown to have a good performance in diagnosis of experimental murine echinococcosis as early as 10 days post infection and of human echinococcosis compared with that of control. Moreover, TER ATPase and TPx-1 were further demonstrated to be suitable for evaluation of the prognosis of patients with treatment. The present study discovers the potential of TER ATPase and TPx-1 as promising diagnostic candidates for echinococcosis.


Asunto(s)
Equinococosis , Echinococcus multilocularis , Vesículas Extracelulares , Humanos , Ratones , Animales , Proteómica , Equinococosis/diagnóstico , Equinococosis/parasitología , Peroxirredoxinas , Adenosina Trifosfatasas
13.
IEEE Trans Cybern ; PP2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35994533

RESUMEN

Matrix factorization (MF) methods decompose a data matrix into a product of two-factor matrices (denoted as U and V ) which are with low ranks. In this article, we propose a generative latent variable model for the data matrix, in which each entry is assumed to be a Gaussian with mean to be the inner product of the corresponding columns of U and V . The prior of each column of U and V is assumed to be as a finite mixture of Gaussians. Further, we propose to model the attribute matrix with the data matrix jointly by considering them as conditional independence with respect to the factor matrix U , building upon previously defined model for the data matrix. Due to the intractability of the proposed models, we employ variational Bayes to infer the posteriors of the factor matrices and the clustering relationships, and to optimize for the model parameters. In our development, the posteriors and model parameters can be readily computed in closed forms, which is much more computationally efficient than existing sampling-based probabilistic MF models. Comprehensive experimental studies of the proposed methods on collaborative filtering and community detection tasks demonstrate that the proposed methods achieve the state-of-the-art performance against a great number of MF-based and non-MF-based algorithms.

14.
Front Cell Infect Microbiol ; 12: 915751, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719335

RESUMEN

It has been over two years since the COVID-19 pandemic began and it is still an unprecedented global challenge. Here, we aim to characterize the antibody profile from a large batch of early COVID-19 cases in China, from January - March 2020. More than 1,000 serum samples from participants in Hubei and Zhejiang province were collected. A series of serum samples were also collected along the disease course from 70 patients in Shanghai and Chongqing for longitudinal analysis. The serologic assay (ALLtest) we developed was confirmed to have high sensitivity (92.58% - 97.55%) and high specificity (92.14% - 96.28%) for the detection of SARS-CoV-2 nucleocapsid-specific antibodies. Confirmed cases found in the Hubei Provincial Center for Disease Control and Prevention (HBCDC), showed a significantly (p = 0.0018) higher positive rate from the ALLtest than RNA test. Then, we further identified the disease course, age, sex, and symptoms that were correlating factors with our ALLtest results. In summary, we confirmed the high reliability of our ALLtest and its important role in COVID-19 diagnosis. The correlating factors we identified will require special attention during future clinical application.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/diagnóstico , Prueba de COVID-19 , China/epidemiología , Humanos , Inmunoensayo/métodos , Inmunoglobulina G , Inmunoglobulina M , Pandemias , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Carbohydr Polym ; 291: 119630, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35698351

RESUMEN

To effectively remove the dyes from wastewater, novel carboxymethyl cellulose/chitosan-CuO giant vesicles with dual function of adsorption and catalytic degradation were prepared. The vesicles were facilely obtained via blending chitosan solution and carboxymethyl cellulose/CuO mixed solution with sequent fast and slow stirring. The removal ratios of methyl orange (MO) and acid black-172 (AB) can reach 86.3% and 88.6% with the catalytic oxidation system of ammonium persulfate and vesicles. Compared with the CuO catalysis without the vesicles, the degradation rates of MO and AB increased by 1.3 and 3.1 times, respectively. The enhanced dye removal is ascribed to the excellent dye adsorption capacity of giant vesicles. Furthermore, the giant vesicles worked well in wide ranges of environmental pH and temperature, and exhibited excellent stability and reusability. This study provides a facile method to load catalyst onto polymeric giant vesicle with outstanding performance for the adsorption and catalytic degradation of dyes.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Adsorción , Carboximetilcelulosa de Sodio , Catálisis , Celulosa , Colorantes , Cobre
16.
Parasite ; 28: 41, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33944774

RESUMEN

Toxoplasma gondii is an obligate intracellular protozoan parasite that causes toxoplasmosis and threatens warm-blooded animal and human health worldwide. Simple and applicable diagnostic methods are urgently needed to guide development of effective approaches for prevention of toxoplasmosis. Most molecular diagnostic tools for T. gondii infection require high technical skills, sophisticated equipment, and a controlled lab environment. In this study, we developed a loop-mediated isothermal amplification-lateral-flow-dipstick (LAMP-LFD) assay that specifically targets the 529 bp for detecting T. gondii infection. This novel portable device is universal, fast, user-friendly, and guarantees experimental sensitivity as well as low risk of aerosol contamination. Our LAMP-LFD assay has a detection limit of 1 fg of T. gondii DNA, and shows no cross-reaction with other parasitic pathogens, including Cryptosporidium parvum, Leishmania donovani, and Plasmodium vivax. We validated the developed assay by detecting T. gondii in DNA extracted from blood samples collected from 318 stray cats and dogs sampled from Deqing, Wenzhou, Yiwu, Lishui and Zhoushan cities across Zhejiang province, Eastern China. The LAMP-LFD device detected T. gondii DNA in 4.76 and 4.69% of stray cats and dogs, respectively. In conclusion, the developed LAMP-LFD assay is efficient, minimizes aerosol contamination, and is therefore suitable for detecting T. gondii across basic medical institutions and field settings.


TITLE: Un nouveau dispositif de bandelette à flux latéral d'amplification isotherme médiée par les boucles (LAMP-LFD) pour la détection rapide de Toxoplasma gondii dans le sang des chats et chiens errants. ABSTRACT: Toxoplasma gondii est un parasite protozoaire intracellulaire obligatoire qui provoque la toxoplasmose et menace la santé humaine et les animaux à sang chaud dans le monde entier. Des méthodes de diagnostic simples et applicables sont nécessaires de toute urgence pour guider le développement d'approches efficaces pour la prévention de la toxoplasmose. La plupart des outils de diagnostic moléculaire pour l'infection par T. gondii nécessitent des compétences techniques élevées, un équipement sophistiqué et un environnement de laboratoire contrôlé. Dans cette étude, nous avons développé un test par bandelettes à flux latéral d'amplification isotherme médiée par les boucles (LAMP-LFD) qui cible spécifiquement les 529 pb qui détectent une infection par T. gondii. Ce nouvel appareil portable est universel, rapide, convivial et garantit une sensibilité expérimentale ainsi qu'un faible risque de contamination par aérosol. Notre test LAMP-LFD a une limite de détection de 1 fg d'ADN de T. gondii et ne montre aucune réaction croisée avec d'autres pathogènes parasites, y compris Cryptosporidium parvum, Leishmania donovani et Plasmodium vivax. Nous avons validé le test en détectant T. gondii dans l'ADN extrait d'échantillons de sang prélevés sur 318 chats et chiens errants prélevés dans les villes de Deqing, Wenzhou, Yiwu, Lishui et Zhoushan dans la province du Zhejiang, dans l'est de la Chine. Le dispositif LAMP-LFD a détecté la prévalence de l'ADN de T. gondii chez respectivement 4,76 et 4,69% des chats et chiens errants. En conclusion, le test LAMP-LFD développé est efficace, minimise la contamination par les aérosols et convient donc à la détection de T. gondii dans les établissements médicaux simples et sur le terrain.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Toxoplasma , Animales , Gatos , China , Perros , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Toxoplasma/genética
17.
Front Cell Infect Microbiol ; 11: 650487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796489

RESUMEN

Background: Convalescent plasma (CP) transfusion is considered to be the priority therapeutic option for COVID-19 inpatients when no specific drugs are available for emerging infections. An alternative, simple, and sensitive method is urgently needed for clinical use to detect neutralization activity of the CP to avoid the use of inconvenient micro-neutralization assay. Method: This study aims to explore optimal index in predicting the COVID-19 CP neutralization activity (neutralizing antibody titers, NAb titers) in an indirect ELISA format. Fifty-seven COVID-19-recovered patients plasma samples were subjected to anti-SARS-CoV-2 RBD, S1, and N protein IgG antibody by indirect ELISA. Results: ELISA-RBD exhibited high specificity (96.2%) and ELISA-N had high sensitivity (100%); while ELISA-S1 had low sensitivity (86.0%) and specificity (73.1%). Furthermore, ELISA-RBD IgG titers and pseudovirus-based NAb titers correlated significantly, with R2 of 0.2564 (P < 0.0001). Conclusion: ELISA-RBD could be a substitute for the neutralization assay in resource-limited situations to screen potential plasma donors for further plasma infusion therapy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/sangre , COVID-19/terapia , Inmunización Pasiva/métodos , Plasma/inmunología , Animales , Anticuerpos Antivirales/uso terapéutico , Antivirales/uso terapéutico , Donantes de Sangre , China , Chlorocebus aethiops , Estudios de Cohortes , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunoglobulina G/sangre , SARS-CoV-2 , Sensibilidad y Especificidad , Células Vero , Sueroterapia para COVID-19
18.
J Parasitol ; 107(2): 141-146, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662114

RESUMEN

Early diagnosis of trichinellosis is still difficult because of the lack of specific symptoms and limited window for serological detection. Here we established an assay based on tracing phosphate ions generated during loop-mediated isothermal amplification (LAMP) to detect Trichinella spiralis DNA in rat feces during its early stage of infection. By targeting a 1.6-kb repetitive element of Tri. spiralis, the assay was able to detect Tri. spiralis DNA in the feces of all infected rats as early as 1 day postinfection (dpi). The positive detection lasted to 7 dpi in the rats infected with 250 muscle larvae, and 21 dpi in the rats infected with 5,000 larvae. The assay was highly sensitive, and could detect 1.7 femtograms (fg) of Tri. spiralis DNA with high specificity, and with no cross reactivity with the DNA from Anisakis pegreffii, Gnathostoma spinigerum, Angiostrongylus cantonensis, Enterobius vermicularis, Schistosoma japonicum, and Trypanosoma evansi. Our present study provided a reliable technique for the early diagnosis of trichinellosis with the advantages of simplicity and speed, as well as high sensitivity and specificity.


Asunto(s)
ADN de Helmintos/aislamiento & purificación , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Fosfatos/aislamiento & purificación , Trichinella spiralis/aislamiento & purificación , Triquinelosis/parasitología , Animales , Heces/parasitología , Fosfatos/metabolismo , Plásmidos , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Trichinella spiralis/genética , Trichinella spiralis/crecimiento & desarrollo , Triquinelosis/diagnóstico
19.
Carbohydr Polym ; 244: 116481, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32536402

RESUMEN

In this study, millimeter-sized chitosan/carboxymethyl cellulose (CTS/CMC) hollow capsules with molar ratio of 1/1 and 1/1.5 were successfully prepared by simple mixing and stirring of positively charged CTS and negatively charged CMC solutions under electrostatic interaction. The hollow capsule exhibited distinct removal performance for three typical dyes of methylene blue, methyl orange and acid blue-113 with different charged functional groups. The dye removal was mainly occurred on the hollow capsule membrane instead of the interior of hollow capsule. Typically, The CTS/CMC hollow capsule showed semi-permeability characteristics for methyl orange adsorption as the porous structure of the hollow capsule membrane. After the dye adsorption, the dyes also can release from the hollow capsules with different rates. The unique performance of CTS/CMC hollow capsule might have potential applications in the dye removal, the mixed dye wastewater separation and drug release.

20.
Front Microbiol ; 10: 734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024505

RESUMEN

Toxoplasma gondii causes serious public health problems, but there is no effective treatment strategy against it currently. DNA vaccines have shown promising findings in this regard. MYR1 is a new virulence factor identified in T. gondii that may have potential as a DNA vaccine candidate. We constructed a recombinant eukaryotic plasmid, pVAX1-MYR1, as a DNA vaccine, injected it intramuscularly into BALB/c mice, and evaluated its immunoprotective effects. pVAX1-MYR1 immunization induced a sequential Th1 and Th2 T-cell response, as indicated by high levels of Th1 and mixed Th1/Th2 cytokines at 2 and 6 weeks after immunization, respectively. These findings were corroborated by the antibody assays too. In addition, increased levels of antigen-specific lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, cytotoxic T lymphocyte activity and cytokine (IFN-γ, IL-12, and IL-10) production were also observed in the immunized mice. These findings showed that pVAX1-MYR1 stimulated humoral and cellular immune responses in the immunized mice. The increased production of IFN-γ and IL-12 was correlated with increased expression of the T-bet and p65 genes of the NF-κB pathway. However, no significant increase was observed in the level of IL-4. The survival of mice immunized with pVAX1-MYR1 was also significantly prolonged compared with the control group mice. Based on all the above findings, the current study proposes that pVAX1-MYR1 can induce a T. gondii-specific immune response and should therefore be considered as a promising vaccine candidate against toxoplasmosis. To the best of our knowledge, this is the first report to evaluate the immunoprotective value of an MYR1-based DNA vaccine against T. gondii.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA