Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Environ Pollut ; : 124397, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906406

RESUMEN

Due to a lack of long-term observations in China, reports on historical ozone concentration are severely limited. In this study, by combining observation, reanalysis and model simulation data, XGBoost machine learning algorithm is used to correct the surface ozone concentration from CMIP6 climate model, and the long-term and large-scale surface ozone concentration of China during 1950-2014 is obtained. The long-term evolutions and trends of ozone and meteorological effects on interannual ozone variations are further analyzed. The results reveal that CMIP6 historical simulations have a large underestimation in ozone concentrations and their trends. The XGB-derived ozone are closer to observations, with R2 value of 0.66 and 0.74 for daily and monthly retrievals, respectively. Both the concentrations and exceedances of ozone in most parts of China have shown increasing trends from 1950 to 2014. The daily mean ozone concentration without climate change effects is estimated to be 117 ppb in the year 1950 averaged over China. It indicates that the increase in anthropogenic emissions of China has a significant contribution to ozone enhancement between 1950 and 2014. The higher ozone growth rates of XGB retrievals than those from the model indicate a regional surface ozone penalty due to the warming climate. The relatively significant increment in ozone are estimated in the Central and Western China. Seasonally, the ozone enhancement is largest in spring, indicating a shift in seasonal variation of ozone. Given the uncertainty in simulating historical ozone by climate model, we show that machine learning approaches can provide improved assessment of evolution in surface ozone, along with valuable information to guide future model development and formulate future ozone pollution prevention and control policies.

2.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38242834

RESUMEN

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

3.
Environ Int ; 183: 108361, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091821

RESUMEN

Due to the implementation of air pollution control measures in China, air quality has significantly improved, although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko (KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission-related trends of air pollutants from 2014 to 2022 in China. The KZ filter analysis showed that PM2.5 decreased by 7.36 ± 2.92% yr-1, while daily maximum 8-h ozone (MDA8 O3) showed an increasing trend with 3.71 ± 2.89% yr-1 in China. The decrease in PM2.5 and increase in MDA8 O3 were primarily attributed to changes in emission, with the relative contribution of 85.8% and 86.0%, respectively. Meteorology variations, including increased ambient temperature, boundary layer height, and reduced relative humidity, also contributed to the reduction of PM2.5 and the enhancement of MDA8 O3. The emission-related trends of PM2.5 and MDA8 O3 exhibited continuous decrease and increase, respectively, from 2014 to 2022, while the variation rates slowed during 2018-2020 compared to that during 2014-2017, highlighting the challenges in further improving air quality, particularly in simultaneously reducing PM2.5 and O3. This study recommends reducing NH3 emissions from the agriculture sector in rural areas and transport emissions in urban areas to further decrease PM2.5 levels. Addressing O3 pollution requires the reduction of O3 precursor gases based on site-specific atmospheric chemistry considerations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Monitoreo del Ambiente , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis , China , Material Particulado/análisis
4.
Sci Total Environ ; 912: 169466, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145677

RESUMEN

The concentration of particulate matter (PM) has been reduced significantly with the implementation of air pollution control plans in Tianjin. However, as an important component of PM that can lead to global warming and adverse health effects, the influence of pollution control measures (PCM) on black carbon (BC) has been less studied. In this study, ten years of BC concentration satellite-based reanalysis data were collected from MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2), and their reliability was verified using ground-monitored BC data. Using the proposed Kolmogorov-Zurbenko and artificial neural network (KZ-ANN) model, the influences of meteorology and emission measures were separated. The results indicated that the overall meteorological conditions were not conducive to BC diffusion, especially in autumn and winter with low temperature, surface solar radiation, boundary layer height, and high atmospheric pressure, all of which increased the BC concentration. This study also found that although a significant reduction in BC emissions was observed in Tianjin (the total emissions of BC in 2020 dropped by 52 % compared with the level in 2013), the change in emission-influenced BC was relatively low (the concentration of emission-influenced BC in 2022 dropped by only 2.39 % compared to that in 2013). The reduction of emission-influenced BC concentration during the air pollution prevention control and action plan (APPC) was higher than the level during of the three-year action plan for winning the blue sky defense war (abbreviated as the Blue Sky Defense War). In addition, the lockdown measures during the Corona Virus Disease 2019 (COVID-19) did not have beneficial effect on the reduction of emission-influenced BC concentration. This phenomenon can be explained by the long-range transport of BC from surrounding areas, which was also proven by the results of the backward trajectory analysis. Therefore, efforts on emissions reduction in Tianjin were diminished. It is necessary to cooperate with the governments in surrounding areas to implement joint BC control measures, especially in autumn and winter.

5.
Huan Jing Ke Xue ; 44(12): 6452-6462, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098374

RESUMEN

Hourly monitoring datasets of PM2.5 mass concentration and associated chemical compositions were used to investigate the variations in their mass concentrations before, during, and after the 7th Military World Games held in Wuhan. Furthermore, the source analysis was conducted through PMF combined with the backward trajectory and concentration weighted trajectory cluster analysis. The study revealed the variations in PM2.5 compositions and sources around the Wuhan Military Games period and their response to local and surrounding regional control measures. This can provide a reference for regional precise prevention and control of PM2.5. Under the influence of emission reduction measures, PM2.5 mass concentration during the control period [(31.3±12.0) µg·m-3] decreased by 14.7% compared with that before the control period, whereas the secondary components were obviously formed, in which sulfate, nitrate, and ammonium(SNA) increased by 25.6% in total. After the control period, owing to the decrease in humidity and the influence of the northwest air mass, the mass concentration of SNA decreased by 36.9%, whereas the mass concentration of mineral elements increased by 4.7 times. The source apportionment results indicated that there was no significant difference between the vehicle emissions before and after the control(P<0.05). Compared with that in the non-control period, the contributions of industrial emission and coal burning decreased by 68.1% and 43.7%, respectively, whereas the contribution of secondary inorganic aerosol increased by 89.5%. With the lack of large-scale control of vehicle emissions, the mass concentrations of NO3- and NOx increased by 6.13 µg·m-3 and 3.56 µg·m-3, respectively. The vehicle emissions peaked at 21:00 [(10.9±3.67) µg·m-3], reflecting the emissions of cargo vehicles, which were only allowed to pass at night during the control period. With the banning of ship navigation, the ship emission in the middle and lower reaches of the Yangtze River significantly decreased(48.8%). There were also high values of fugitive dust and industrial emissions near the Anhui section of the Yangtze River waterway, which reflected the dense distribution of industrial activities and road transportation along the Yangtze River. After the control period, the fugitive dust increased by 6.6 times, and the source areas were mainly distributed in Xiangyang and Jingmen.

6.
Environ Sci Technol ; 57(48): 20043-20052, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992316

RESUMEN

Levoglucosan (LG) is a pyrolysis product of cellulose and hemicellulose at low combustion temperatures. However, LG release cannot be determined only by considering the contents of cellulose and hemicellulose exclusively due to the complexity of combustion processes and the physical-chemical properties of the fuel. This study detected the emission factors (EFs) of LG from 22 different solid fuel samples (including coal and biomass) by considering 18 different fuel properties and five combustion parameters. The average LGEFs during solid fuel burning varied in a range of 0.03-136 mg kg-1, with a magnitude difference of 1-4 orders. While the variations in cellulose (59.5-368 mg g-1) and hemicellulose (73.5-165 mg g-1) contents of fuel samples were only one- to 6-fold. A short combustion duration (<150 min) and a medium combustion temperature (200-400 °C) influenced by volatile and ash contents are crucial for the generation and accumulation of LG. A random forest coupled with the Akaike information criterion stepwise regression model successfully explained 96% of the total LG emission variation using three variables (ash content, cellulose content, and modified combustion efficiency). The ash content promoted coke formation and LG chain cracking by increasing the pyrolysis temperature and is considered the most important factor. The alkali metal in ash can reduce the energy barrier of intramolecular ring contraction reactions and inhibit the dehydration reactions, which led to additional heat being utilized by the competitive pathways of LG formation. This study provided a method to address the parametrization and release mechanisms of combustion source emissions.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , Carbón Mineral/análisis , Glucosa , Temperatura , Celulosa , Contaminantes Atmosféricos/análisis
7.
Environ Pollut ; 333: 122077, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343912

RESUMEN

Vehicle exhaust and oil fuel evaporation emit volatile organic compounds (VOCs). The differences in VOC compositions and their effects determined using different methods have not been addressed sufficiently. In this study, VOC samples are obtained from single gasoline and diesel vehicle exhausts using a portable emission measurement system, from a tunnel in Yichang City, and from gasoline and diesel evaporation at gas stations. A total of 107 VOCs are analysed. The calculated VOC source profiles (based on VOC source profiles of single-vehicle type and vehicle fleet composition in the tunnel) and the tested source profiles (from a tunnel test) are compared. The results show that gasoline burning can reduce alkenes from a mass fraction of 53.1% (for evaporation) to 3.6% (for burning), as well as increase the mass fraction of alkenes from 1.3% (for diesel evaporation) to 34.0% (for diesel burning). The calculated VOC source profiles differed from the tested VOC source profiles, with a coefficient of divergence of 0.6. Ethane, ethylene, n-undecane, and n-dodecane are used to distinguish VOCs in gasoline and diesel exhausts. Cis-2-butene, 2-methylpentane, m/p-xylene, o-xylene, and n-decane can be used to separate gasoline from diesel. The xylene/ethylbenzene ratios accurately reveal the photochemical age. Gasoline burning increases health risks associated with VOCs compared with gasoline evaporation. Furthermore, it modifies the main contributor to ozone formation potential. This study is expected to facilitate refined VOC source apportionment and studies pertaining to speciated emission inventories.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Gasolina/análisis , Ozono/análisis , Alquenos/análisis , Monitoreo del Ambiente , China
8.
Huan Jing Ke Xue ; 44(2): 670-679, 2023 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-36775591

RESUMEN

The random forest algorithm was used to separate the mass concentrations of six air pollutants (SO2, NO2, CO, PM10, PM2.5, and O3) contributed by emissions and meteorological conditions. Their variations for five types of sites including Wuhan's central urban, suburb, industrial, the third ring road traffic, and urban background sites were investigated. The results showed that the values of PM2.5/CO, PM10/CO, and NO2/CO during the lockdown period decreased by 10.8-21.7, 9.34-24.7, and 14.4-22.1 times compared with the period before the lockdown, indicating that the contributions of emissions to PM2.5, PM10, and NO2 were reduced. O3/CO increased by 50.1-61.5 times, implying that the secondary formation increased obviously. The contributions of emissions to various types of pollutants all increased after the lockdown. During the lockdown period, affected by the operation of some uninterrupted industrial processes, PM2.5 concentrations in industrial areas dropped the least (20.5%). Compared with the lockdown period, residential activities, transportation, and industrial production were basically restored after the lockdown, resulting in the alleviation of the reduction in PM2.5 emission-related concentrations. The increase in emission-related O3 concentrations could be associated with the decreased NO and PM2.5 concentrations during the lockdown period. The elevated O3 partially offset the improved air quality brought by the reduced NO2and PM2.5 concentrations. After the lockdown, ρ(O3) related with meteorology at the suburban and urban background sites increased by 16.2 µg·m-3 and 16.1 µg·m-3, respectively, which could be attributed to the increased ambient temperature and decreased relative humidity. The decrease in PM2.5 and increase in O3 concentrations caused by reduced traffic and industrial emissions at the third ring road traffic and central urban regions can provide reference for the current coordinated and precise control of PM2.5 and O3 in subregions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Meteorología , Dióxido de Nitrógeno , Material Particulado/análisis , COVID-19/epidemiología , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Contaminación del Aire/análisis
9.
Sci Total Environ ; 854: 158871, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36126707

RESUMEN

China has enacted the "Clean Heating" (CH) policy in north China. The domain-specific impacts on PM2.5 constituents and sources in small cities are still lacking, which obstruct the further policy optimization. Here, we performed an intensive observation covering the heating period (HP) and pre-heating period (PHP) in winter of 2017 at urban (UR), industrial (IS), and suburban (SUR) sites in one of the "2 + 26" cities. The mean PM2.5 concentrations at UR and IS decreased by 15.2 % and 4.6 %, while increased by 9.8 % at SUR in the HP compared with the PHP, indicating the heterogeneous responses. The lowest contribution percentages of coal combustion (14.6 %) and industrial emissions (17.1 %) to PM2.5 at UR in the HP implied the CH policy played more effective role. The most increase in NO3-/SO42- ratio by 26.8 % and the highest NO3- concentration at UR in the HP were linked mainly with the thermal-NOx emitted from natural gas (NG) burning in view of NOx emission reductions from other sources. The highest concentrations of OC, SO42-, K+, and Cl-, and contribution percentages of biomass burning (20.0 %) and coal combustion (24.8 %) to PM2.5 at SUR in the HP evidenced the enhanced usage of biomass/coal. Coal banning in the HP at IS and UR led to the obvious decreases in OC, SO42-, As, and Sb. Secondary nitrate became the largest PM2.5 source at IS and UR in the HP. Coal banning, emission control on large-size enterprises and ignored control on small-size enterprises efficiently modified the concentrations and health risks of heavy metals. The lowest carcinogenic risks moved from SUR in the PHP to UR in the HP. The policies on de-NOx of NG-burning related enterprises, reduction of biomass/coal usage in suburban area, and strict regulation of small-size enterprises were urgently need to further improve the air quality.

10.
Sci Total Environ ; 858(Pt 2): 159830, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343804

RESUMEN

Regional PM2.5 transport is a crucial factor affecting air quality, and the meteorological mechanism in the atmospheric boundary layer (ABL) has not been fully understood over the receptor region in the regional transport of air pollutants. Based on the intensive vertical measurements of air pollutants and meteorology in the ABL during a transport-induced heavy air pollution event in Xiangyang, an urban site over a receptor region in central China, we investigated the meteorological mechanism in vertical PM2.5 changes in the ABL for heavy air pollution over the receptor region. Driven by northerly winds, regional PM2.5 transport was built from upstream northern China to downstream central China, where the observed ABL structures were unstable throughout the air pollution event. We assessed the ABL structures with meteorological and PM2.5 profiles at growth, maintenance, and dissipation stages, and elucidated the mechanism of regional PM2.5 transport inducing air pollution over the receptor region with the contribution of thermal and mechanical factors. The regional PM2.5 transport was concentrated in the upper ABL over the downwind receptor region with high PM2.5 concentrations at altitudes of 600-800 m, where the transported PM2.5 peaks were downwards mixed by vertical wind shear, forming the vertical PM2.5 transport from the upper ABL to near-surface in the growth stage; the weakened winds and less unstable structures in the ABL favored the sustained pollution with slight vertical PM2.5 changes in the maintenance stage, which was dominated by thermal factors with 87 % contribution; the removal of PM2.5 was triggered by increasing winds from the upper ABL, activating the dissipation of heavy PM2.5 pollution with the mechanical effect accounting for 60 % in the dissipation stage. These findings could improve our understanding of ABL's influence on air pollution over the receptor region with implications for the regional transport of air pollutants in environmental changes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Meteorología , Material Particulado/análisis , Monitoreo del Ambiente , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , China , Estaciones del Año
11.
Environ Sci Pollut Res Int ; 30(2): 4694-4708, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35972655

RESUMEN

Summertime ozone pollution has become increasingly severe over many parts of China in recent years. Due to lack of historical ozone observations, few studies have analyzed the linkage between natural climate variability and ozone levels for a long time series. This study uses the simulation datasets from CMIP6 to explore the effects of El Niño-Southern Oscillation (ENSO) on summertime (June/July/August) surface ozone concentrations in central-eastern China (CEC; 20°N-42°N, 100°E-123°E) during the period of 1950-2014. Our results show that, after excluding the emission-related trend, the detrended summertime daily mean surface ozone concentrations averaged over CEC in El Niño years (30.69 ppb) are higher than those in La Niña events (29.34 ppb). Compared to the summertime mean ozone of 1950-2014 (30.25 ppb), the maximum anomalies in CMIP6 are 2.88 ppb (9.52% higher) and - 5.52 ppb (18.25% lower) in El Niño and La Niña years, respectively. In addition, the summertime MDA8 ozone of CEC is significantly correlated with the central-eastern equatorial Pacific SST (5°N-5°S, 170°W-120°W) (R = 0.29, P-value = 0.02). Such ozone increases/declines in El Niño/La Niña years are also found in satellite observations of OMI ozone. The results show that the ENSO affects the large-scale circulations over central-eastern China, which regulate the regional atmospheric stability and meteorological conditions (including horizontal wind fields, geopotential height, vertical velocity, surface air temperature, and precipitation) to influence the efficiency of ozone photochemical formation and transport. Our study makes better estimation and attribution of future surface ozone pollution in China.


Asunto(s)
El Niño Oscilación del Sur , Procesos Fotoquímicos , Contaminación Ambiental , Temperatura , China
12.
Environ Sci Ecotechnol ; 12: 100201, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36157345

RESUMEN

Light-absorbing organic carbon (OC), sometimes known as Brown Carbon (BrC), has been recognized as an important fraction of carbonaceous aerosols substantially affecting radiative forcing. This study firstly developed a bottom-up estimate of global primary BrC, and discussed its spatiotemporal distribution and source contributions from 1960 to 2010. The global total primary BrC emission from both natural and anthropogenic sources in 2010 was 7.26 (5.98-8.93 as an interquartile range) Tg, with 43.5% from anthropogenic sources. High primary BrC emissions were in regions such as Africa, South America, South and East Asia with natural sources (wild fires and deforestation) contributing over 70% in the former two regions, while in East Asia, anthropogenic sources, especially residential solid fuel combustion, accounted for over 80% of the regional total BrC emissions. Globally, the historical trend was mainly driven by anthropogenic sources, which increased from 1960 to 1990 and then started to decline. Residential emissions significantly impacted on emissions and temporal trends that varied by region. In South and Southeast Asia, the emissions increased obviously due to population growth and a slow transition from solid fuels to clean modern energies in the residential sector. It is estimated that in primary OC, the global average was about 20% BrC, but this ratio varied from 13% to 47%, depending on sector and region. In areas with high residential solid fuel combustion emissions, the ratio was generally twice the value in other areas. Uncertainties in the work are associated with the concept of BrC and measurement technologies, pointing to the need for more studies on BrC analysis and quantification in both emissions and the air.

13.
Environ Sci Technol ; 56(18): 12873-12885, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36083258

RESUMEN

The light-absorbing organic aerosol (OA) constitutes an important fraction of absorbing components, counteracting major cooling effect of aerosols to climate. The mechanisms in linking the complex and changeable chemistry of OA with its absorbing properties remain to be elucidated. Here, by using solvent extraction, ambient OA from an urban environment was fractionated according to polarity, which was further nebulized and online characterized with compositions and absorbing properties. Water extracted high-polar compounds with a significantly higher oxygen to carbon ratio (O/C) than methanol extracts. A transition O/C of about 0.6 was found, below and above which the enhancement and reduction of OA absorptivity were observed with increasing O/C, occurring on the less polar and high polar compounds, respectively. In particular, the co-increase of nitrogen and oxygen elements suggests the important role of nitrogen-containing functional groups in enhancing the absorptivity of the less polar compounds (e.g., forming nitrogen-containing aromatics), while further oxidation (O/C > 0.6) on high-polar compounds likely led to fragmentation and bleaching chromophores. The results here may reconcile the previous observations about darkening or whitening chromophores of brown carbon, and the parametrization of O/C has the potential to link the changing chemistry of OA with its polarity and absorbing properties.


Asunto(s)
Contaminantes Atmosféricos , Metanol , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Nitrógeno , Oxígeno , Material Particulado/análisis , Solventes , Agua/química
14.
Huan Jing Ke Xue ; 43(6): 2966-2978, 2022 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-35686766

RESUMEN

The hourly concentrations of 102 volatile organic compounds (VOCs) in Wuhan from June to July in 2019 were obtained using an online monitoring instrument. The ρ(VOCs) varied from 24.9 to 254 µg·m-3, with a mean value of (67.7±32.2) µg·m-3. According to the air quality standard of ozone, the observation period was divided into clean and polluted episodes of O3. The differences in meteorological parameters, VOC concentrations, compositions, sources, and ozone formation potential (OFP) between clean and polluted episodes were analyzed and compared. The average mass concentrations of NOx, CO, and VOCs in polluted periods exceeded those of clean periods by 34.9%, 25.0%, and 27.8%, respectively. The mass concentrations of alkanes, alkenes, aromatic hydrocarbons, and oxygenated volatile organic compounds in polluted periods were higher than those in clean periods by 40.7%, 39.5%, 26.9%, and 21.5%, respectively. The average OFP in polluted periods[(102±69.6) µg·m-3] exceeded that of clean periods by 33.5%. The average contribution rates of LPG combustion, industrial sources, vehicle emissions, natural sources, and solvent usage to VOCs were 3.4%, 2.5%, 0.2%, 1.3%, and 1.4% lower than those of the clean periods, respectively, whereas the gasoline evaporation increased by 8.8% in polluted periods. The contributions of vehicle emissions and gasoline evaporation exhibited higher values in the morning and evening, with lower values in the afternoon, which may have been related to peak vehicles emissions. The contribution of LPG combustion peaked along with the cooking time. The concentration weighted trajectory showed that the main sources of VOCs in polluted periods were from local emissions and surrounding regions in the northeastern direction of Wuhan. In polluted periods, gasoline evaporation and LPG combustion should be emphasized for preventing O3 pollution in the summer in Wuhan.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Gasolina , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
15.
J Hazard Mater ; 436: 129289, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739795

RESUMEN

Atmospheric lead (Pb) pollution has attracted long-term and widespread concerns due to its high toxicity. The definite source identification of atmospheric Pb is the key step to mitigate this pollution. Here, we first report an overlooked source of atmospheric nanosized Pb particles using transmission electron microscopy and bulk sample analyses, finding that residential honeycomb briquette combustion emits large numbers of nanosized Pb-rich particles. We found that 33.7 ± 19.9 % of primary particles by number from residential honeycomb briquette combustion contains the crystalline Pb particles. These Pb-rich particles range in size from 14 to 956 nm with a mean diameter of 117 nm. Compared with raw coal chunks, honeycomb briquette combustion could emit less carbonaceous particles, but largely increase nanosized Pb particle emissions. This result is attributed to two key factors: (1) higher Pb content in honeycomb briquette (63.6 µg g-1) than that in coal chunk (8.5 µg g-1), and (2) higher Pb release rate for honeycomb briquette (62.3 %) caused by honeycomb structure than that for coal chunk (20.1 %). This study highlights that atmospheric and health implications of high emissions of toxic nanosized Pb from honeycomb briquette should be paid more attention in future research on ambient and indoor airs.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , China , Carbón Mineral/análisis , Monitoreo del Ambiente , Plomo/análisis , Material Particulado/análisis
16.
Environ Res ; 213: 113719, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35753370

RESUMEN

Stringent pollution control measures are generally applied to improve air quality, especially in the Spring Festival in China. Meanwhile, human activities are reduced significantly due to nationwide lockdown measures to curtail the COVID-19 spreading in 2020. Herein, to better understand the influence of control measures and meteorology on air pollution, this study compared the variation of pollution source and their health risk during the 2019 and 2020 Spring Festival in Linfen, China. Results revealed that the average concentration of PM2.5 in 2020 decreased by 39.0% when compared to the 2019 Spring Festival. Organic carbon (OC) and SO42- were the primary contributor to PM2.5 with the value of 19.5% (21.1%) and 23.5% (25.5%) in 2019 (2020) Spring Festival, respectively. Based on the positive matrix factorization (PMF) model, six pollution sources of PM2.5 were indicated. Vehicle emissions (VE) had the maximum reduction in pollution source concentration (28.39 µg· m-3), followed by dust fall (DF) (11.47 µg· m-3), firework burning (FB) (10.39 µg· m-3), coal combustion (CC) (8.54 µg· m-3), and secondary inorganic aerosol (SIA) (3.95 µg· m-3). However, the apportionment concentration of biomass burning (BB) increased by 78.7%, indicating a significant increase in biomass combustion under control measures. PAHs-lifetime lung cancer risk (ILCR) of VE, CC, FB, BB, and DF, decreased by 44.6%, 43.2%, 34.1%, 21.3%, and 2.0%, respectively. Additionally, the average contribution of meteorological conditions on PM2.5 in 2020 increased by 20.21% compared to 2019 Spring Festival, demonstrating that meteorological conditions played a crucial role in located air pollution. This study revealed that the existing control measures in Linfen were efficient to reduce air pollution and health risk, whereas more BB emissions were worthy of further attention. Furthermore, the result was conducive to developing more effective control measures and putting more attention into unfavorable meteorological conditions in Linfen.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , COVID-19/epidemiología , China/epidemiología , Carbón Mineral/análisis , Control de Enfermedades Transmisibles , Polvo/análisis , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , Material Particulado/toxicidad , Aerosoles y Gotitas Respiratorias , Estaciones del Año , Emisiones de Vehículos/análisis
17.
Environ Int ; 165: 107344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35709581

RESUMEN

Atmospheric PAHs (polycyclic aromatic hydrocarbons) and their derivatives are a global concern that influences environments and threatens human health. Concentrations of 52 PAHs and the main derivatives in six Chinese megacities were measured in the winter of 2019. The concentrations of ∑PAHs (sum of 52 PAHs) ranged from 19.42 ± 7.68 to 65.40 ± 29.84 ng m-3, with significantly higher levels in northern cities (Harbin [HB], Beijing [BJ], and Xi'an [XA]) than southern ones (Wuhan [WH], Chengdu [CD] and Guangzhou [GZ]). Source apportionment of ∑PAHs was conducted by the PMF model and results showed coal combustion and traffic emissions were the two dominant sources, which dominated ∑PAHs in northern and southern cities, respectively. Biomass burning was also characterized as a crucial source of ∑PAHs and showed extremely high contributions in XA (42.5%). Assisted by the individual PAH source apportionment results, the source-depend TEQ (total BaP equivalent) and incremental lifetime cancer risk (ILCR) were firstly reported in these cities. The results highlighted the contributions of coal combustion and biomass burning to both TEQ and ILCR, which were underestimated by ∑PAHs source apportionment. Secondary organic aerosol-derived PAHs were demonstrated to increase the TEQ compared with the fresh PAHs and three parameters, namely temperature, relative humidity, and O3 concentrations were characterized by multiple linear regression as the principal factors influencing secondary reactions of PAHs in winter. This study provides accurate human health-orientated results and potential control measures to mitigate the toxicity of secondary formed PAHs, and significantly decrease the uncertainty level of traditional methods. The results also revealed great progress in air pollution control by the Chinese government in the past 20 years, but still a long way to go to formulate strict emission control strategies from both environmental and human health-protective perspectives.


Asunto(s)
Contaminantes Atmosféricos , Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Ciudades , Carbón Mineral/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
18.
Sci Total Environ ; 838(Pt 2): 155971, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35597348

RESUMEN

With the implementation of clean coal policy in China, the chunk coal has been gradually replaced by honeycomb briquette in domestic energies. In this study, the molecular composition of fine particles (PM2.5) from chunk coal and honeycomb briquette combustion is characterized using the Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS). More than 6000 molecular formulae were detected in each PM2.5 sample. A remarkable decrease in unsaturation and aromatic compounds was found from chunk coal to honeycomb briquette derived aerosols. Around 73.6% of the unique CHON compounds in chunk coal are considered to have aromatic structures, while it decreased to 7.3% in honeycomb briquette. Most of these nitroaromatics detected only in chunk coal are highly carcinogenic and mutagenic with 4-6 rings. Moreover, the aromatic compounds in sulfur-containing compounds also showed a significant decrease. Meanwhile, because of the perforated shape and the additives added during the production of honeycomb briquettes, there are more heteroatoms-containing molecules released from honeycomb briquette combustion, which are highly functional compounds with high molecular weight, high degree of oxidation, and low volatility. Our results provide molecular level evidence that the transformation from chunk coal to honeycomb briquette can effectively reduce the emission of aromatic compounds, which is beneficial to assessing and reducing the impacts to climate change as well as human health.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Carbón Mineral/análisis , Humanos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
19.
Environ Res ; 211: 113107, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35305979

RESUMEN

The oxidation of polycyclic aromatic hydrocarbons (PAHs) determines their lifetime, toxicity and consequent environmental and climate impacts. The residential solid fuel burning composes of a substantial fraction of PAH emissions; however, their oxidation rate is yet to be explicitly understood, which is complicated by the contrasting emission factors under different combustion conditions and their subsequent evolution in the atmosphere. Here we used a plume evolution chamber using ambient oxidants to simulate the evolution of residential solid fuel burning emissions under real-world solar radiation, and then to investigate the oxidation process of the emitted PAHs. Contrasting oxidation rate of PAHs was found to be influenced by particles with or without presence of substantial amount of black carbon (BC). In the flaming burning phase, which contained 46% of BC mass fraction and 8% of organic aerosol (OA) internally mixed with BC, the larger PAHs (with 4-7 rings) was rapidly oxidized 12% for every hour of evolution under solar radiation; however, the larger PAHs from smoldering phase tended to maintain unmodified during the evolution, when 95% of OA was externally mixed with only minor fraction of BC (<5%). This may be ascribed to the complex morphology of BC, allowing more exposure for the internally-mixed OA to the oxidants; in contrast with those externally-mixed OA which was prone to be coated by condensed secondary substances. This raises an important consideration about the particle mixing state in influencing the oxidation of PAHs, particularly the coating on PAHs which may extend their lifetime and environmental impacts.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Monitoreo del Ambiente , Oxidantes , Hidrocarburos Policíclicos Aromáticos/análisis , Hollín
20.
Sci Total Environ ; 824: 153708, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35182649

RESUMEN

Ammonia emission reduction is increasingly being considered one of the control measures to mitigate wintertime fine particulate matter (PM2.5) pollution. Three wintertime observations from 2012 to 2018 in Wuhan, China, were analyzed to examine the effectiveness of ammonia control in wintertime PM2.5 reduction based on the critical total ammonia concentration (CTAC, i.e., the inflection point of effective ammonia control for PM2.5 mass reduction based on the asymmetric response of PM2.5 to ammonia control). The CTAC gradually approached 0% (immediate effectiveness), with values of -26% in 2012, -23% in 2015, and -9% in 2018. At the observed ambient conditions, there were significant positive correlations of the CTAC with sulfate and total nitrate changes, in contrast to the negative correlation of the CTAC with total ammonia change. An approximately 10% total ammonia reduction could offset the decline in CTAC attributed to a 30-40% sulfate or 20-30% total nitrate reduction in Wuhan. This study indicates that the combined control of SO2 + NOx (NO+NO2) remains the preferred way to reduce inorganic particles in Central China at present, despite a tendency of the ambient chemical state moving towards effective ammonia control. However, as the CTAC approaches 0%, the effectiveness of ammonia and NOx reduction measures targeting wintertime PM2.5 can greatly exceed that observed during the 2012-2018 period in Central China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Amoníaco/análisis , China , Monitoreo del Ambiente , Nitratos/análisis , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Sulfatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...