Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 81
1.
Int Immunopharmacol ; 134: 112190, 2024 May 03.
Article En | MEDLINE | ID: mdl-38703569

Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.

2.
Autophagy ; : 1-17, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762757

Bleomycin exhibits effective chemotherapeutic activity against multiple types of tumors, and also induces various side effects, such as pulmonary fibrosis and neuronal defects, which limit the clinical application of this drug. Macroautophagy/autophagy has been recently reported to be involved in the functions of bleomycin, and yet the mechanisms of their crosstalk remain insufficiently understood. Here, we demonstrated that reactive oxygen species (ROS) produced during bleomycin activation hampered autophagy flux by inducing lysosomal membrane permeabilization (LMP) and obstructing lysosomal degradation. Exhaustion of ROS with N-acetylcysteine relieved LMP and autophagy defects. Notably, we observed that LMP and autophagy blockage preceded the emergence of cellular senescence during bleomycin treatment. In addition, promoting or inhibiting autophagy-lysosome degradation alleviated or exacerbated the phenotypes of senescence, respectively. This suggests the alternation of autophagy activity is more a regulatory mechanism than a consequence of bleomycin-induced cellular senescence. Taken together, we reveal a specific role of bleomycin-induced ROS in mediating defects of autophagic degradation and further regulating cellular senescence in vitro and in vivo. Our findings, conversely, indicate the autophagy-lysosome degradation pathway as a target for modulating the functions of bleomycin. These provide a new perspective for optimizing bleomycin as a clinically applicable chemotherapeutics devoid of severe side-effects.Abbreviations: AT2 cells: type II alveolar epithelial cells; ATG7: autophagy related 7; bEnd.3: mouse brain microvascular endothelial cells; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; CCL2: C-C motif chemokine ligand 2; CDKN1A: cyclin dependent kinase inhibitor 1A; CDKN2A: cyclin dependent kinase inhibitor 2A; FTH1: ferritin heavy polypeptide 1; γ-H2AX: phosphorylated H2A.X variant histone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cells; HT22: hippocampal neuronal cell lines; Il: interleukin; LAMP: lysosomal-associated membrane protein; LMP: lysosome membrane permeabilization; MTORC1: mechanistic target of rapamycin kinase complex 1; NAC: N-acetylcysteine; NCOA4: nuclear receptor coactivator 4; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; RPS6KB/S6K: ribosomal protein S6 kinase; SA-GLB1/ß-gal: senescence-associated galactosidase, beta 1; SAHF: senescence-associated heterochromatic foci; SASP: senescence-associated secretory phenotype; SEC62: SEC62 homolog, preprotein translocation; SEP: superecliptic pHluorin; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.

3.
Phytomedicine ; 128: 155380, 2024 Jun.
Article En | MEDLINE | ID: mdl-38507854

BACKGROUND: Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE: To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS: First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS: Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION: Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.


Ferroptosis , Neurons , Oligodendroglia , Pentacyclic Triterpenes , Rats, Sprague-Dawley , Spinal Cord Injuries , Triterpenes , Ferroptosis/drug effects , Animals , Spinal Cord Injuries/drug therapy , Pentacyclic Triterpenes/pharmacology , Oligodendroglia/drug effects , Neurons/drug effects , Rats , Triterpenes/pharmacology , Male , NF-E2-Related Factor 2/metabolism , Disease Models, Animal , Reactive Oxygen Species/metabolism , Spinal Cord/drug effects , Recovery of Function/drug effects
5.
Adv Sci (Weinh) ; : e2309305, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38509833

Spinal cord injury (SCI) has no effective treatment modalities. It faces a significant global therapeutical challenge, given its features of poor axon regeneration, progressive local inflammation, and inefficient systemic drug delivery due to the blood-spinal cord barrier (BSCB). To address these challenges, a new nano complex that achieves targeted drug delivery to the damaged spinal cord is proposed, which contains a mesoporous silica nanoparticle core loaded with microRNA and a cloaking layer of human umbilical cord mesenchymal stem cell membrane modified with rabies virus glycoprotein (RVG). The nano complex more readily crosses the damaged BSCB with its exosome-resembling properties, including appropriate size and a low-immunogenic cell membrane disguise and accumulates in the injury center because of RVG, where it releases abundant microRNAs to elicit axon sprouting and rehabilitate the inflammatory microenvironment. Culturing with nano complexes promotes axonal growth in neurons and M2 polarization in microglia. Furthermore, it showed that SCI mice treated with this nano complex by tail vein injection display significant improvement in axon regrowth, microenvironment regulation, and functional restoration. The efficacy and biocompatibility of the targeted delivery of microRNA by nano complexes demonstrate their immense potential as a noninvasive treatment for SCI.

6.
Heliyon ; 9(9): e20024, 2023 Sep.
Article En | MEDLINE | ID: mdl-37809922

Spinal cord injury (SCI) is a highly complex neurological disease, but there is no effective repair method. Quercetin is a flavonol drug and has a variety of biological activities, such as scavenging oxygen free radicals in the body to resist oxidation, inhibiting inflammation, and so on. In this study, quercetin was firstly demonstrated to reduce tissue damage, promote neuron survival and repair motor function after SCI in rats through in vivo experiments. Then, 293 potential targets of quercetin repair for SCI were predicted by network pharmacology. GO analysis revealed that the biological processes of potential targets focused mainly on signal transduction, negative regulation of the apoptotic process, protein phosphorylation, drug response, and so on. Similarly, KEGG analysis suggested that these potential targets were involved in cell growth regulation, differentiation, apoptosis, and a few metabolic pathways. PPI network analysis predicted that the key genes were EP300, CREBBP, SRC, HSP90AA1, TP53, PIK3R1, EGFR, ESR1, and CBL. Further, the molecular docking showed that quercetin binds well with these proteins. Finally, RT-qPCR and Western blotting experiments verified that quercetin downregulated the expression levels of PIK3R1 and EGFR. It is suggested that quercetin can repair SCI in rats through PI3K-AKT signaling pathway and EGFR/MAPK pathway, which may provide a new theoretical basis for the repair of spinal cord injury.

8.
Neural Regen Res ; 18(11): 2474-2481, 2023 Nov.
Article En | MEDLINE | ID: mdl-37282479

Maintaining the integrity of the blood-spinal cord barrier is critical for the recovery of spinal cord injury. Ferroptosis contributes to the pathogenesis of spinal cord injury. We hypothesized that ferroptosis is involved in disruption of the blood-spinal cord barrier. In this study, we administered the ferroptosis inhibitor liproxstatin-1 intraperitoneally after contusive spinal cord injury in rats. Liproxstatin-1 improved locomotor recovery and somatosensory evoked potential electrophysiological performance after spinal cord injury. Liproxstatin-1 maintained blood-spinal cord barrier integrity by upregulation of the expression of tight junction protein. Liproxstatin-1 inhibited ferroptosis of endothelial cell after spinal cord injury, as shown by the immunofluorescence of an endothelial cell marker (rat endothelium cell antigen-1, RECA-1) and ferroptosis markers Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Liproxstatin-1 reduced brain endothelial cell ferroptosis in vitro by upregulating glutathione peroxidase 4 and downregulating Acyl-CoA synthetase long-chain family member 4 and 15-lipoxygenase. Furthermore, inflammatory cell recruitment and astrogliosis were mitigated after liproxstatin-1 treatment. In summary, liproxstatin-1 improved spinal cord injury recovery by inhibiting ferroptosis in endothelial cells and maintaining blood-spinal cord barrier integrity.

9.
Virol Sin ; 38(3): 448-458, 2023 Jun.
Article En | MEDLINE | ID: mdl-37172824

Human immunodeficiency virus-1 (HIV-1) encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction. Spastin, a microtubule severing protein, is an identified HIV-1 dependency factor, but the mechanism regulating HIV-1 is unclear. Here, the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation. Further investigation showed that increased sodium tolerance 1 (IST1), the subunit of endosomal sorting complex required for transport (ESCRT), could interact with the MIT domain of spastin to regulate the intracellular Gag production. In summary, spastin is required for HIV-1 replication, while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation. Spastin may serve as new target for HIV-1 prophylactic and therapy.


HIV-1 , Humans , Spastin/metabolism , HIV-1/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Microtubules , Protein Transport
10.
Bioact Mater ; 25: 766-782, 2023 Jul.
Article En | MEDLINE | ID: mdl-37056263

Spinal cord injury (SCI) causes motor, sensory and automatic impairment due to rarely axon regeneration. Developing effective treatment for SCI in the clinic is extremely challenging because of the restrictive axonal regenerative ability and disconnection of neural elements after injury, as well as the limited systemic drug delivery efficiency caused by blood spinal cord barrier. To develop an effective non-invasive treatment strategy for SCI in clinic, we generated an autologous plasma exosome (AP-EXO) based biological scaffold where AP-EXO was loaded with neuron targeting peptide (RVG) and growth-facilitating peptides (ILP and ISP). This scaffold can be targeted delivered to neurons in the injured area and elicit robust axon regrowth across the lesion core to the levels over 30-fold greater than naïve treatment, thus reestablish the intraspinal circuits and promote motor functional recovery after spinal cord injury in mice. More importantly, in ex vivo, human plasma exosomes (HP-EXO) loaded with combinatory peptides of RVG, ILP and ISP showed safety and no liver and kidney toxicity in the application to nude SCI mice. Combining the efficacy and safety, the AP-EXO-based personalized treatment confers functional recovery after SCI and showed immense promising in biomedical applications in treating SCI. It is helpful to expand the application of combinatory peptides and human plasma derived autologous exosomes in promoting regeneration and recovery upon SCI treatment.

11.
Elife ; 122023 03 07.
Article En | MEDLINE | ID: mdl-36880874

Cerebral ischaemia‒reperfusion injury (IRI), during which neurons undergo oxygen-glucose deprivation/reoxygenation (OGD/R), is a notable pathological process in many neurological diseases. N1-methyladenosine (m1A) is an RNA modification that can affect gene expression and RNA stability. The m1A landscape and potential functions of m1A modification in neurons remain poorly understood. We explored RNA (mRNA, lncRNA, and circRNA) m1A modification in normal and OGD/R-treated mouse neurons and the effect of m1A on diverse RNAs. We investigated the m1A landscape in primary neurons, identified m1A-modified RNAs, and found that OGD/R increased the number of m1A RNAs. m1A modification might also affect the regulatory mechanisms of noncoding RNAs, e.g., lncRNA-RNA binding proteins (RBPs) interactions and circRNA translation. We showed that m1A modification mediates the circRNA/lncRNA‒miRNA-mRNA competing endogenous RNA (ceRNA) mechanism and that 3' untranslated region (3'UTR) modification of mRNAs can hinder miRNA-mRNA binding. Three modification patterns were identified, and genes with different patterns had intrinsic mechanisms with potential m1A-regulatory specificity. Systematic analysis of the m1A landscape in normal and OGD/R neurons lays a critical foundation for understanding RNA modification and provides new perspectives and a theoretical basis for treating and developing drugs for OGD/R pathology-related diseases.


MicroRNAs , RNA, Long Noncoding , Animals , Mice , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , 3' Untranslated Regions , Glucose , Neurons , Oxygen
12.
Epigenetics ; 18(1): 2181575, 2023 12.
Article En | MEDLINE | ID: mdl-36861189

Cerebral ischaemiareperfusion injury is an important pathological process in nervous system diseases during which neurons undergo oxygenglucose deprivation and reoxygenation (OGD/R) injury. No study has used epitranscriptomics to explore the characteristics and mechanism of injury. N6methyladenosine (m6A) is the most abundant epitranscriptomic RNA modification. However, little is known about m6A modifications in neurons, especially during OGD/R. m6A RNA immunoprecipitation sequencing (MeRIPseq) and RNA-sequencing data for normal and OGD/R-treated neurons were analysed by bioinformatics. MeRIP quantitative real-time polymerase chain reaction was used to determine the m6A modification levels on specific RNAs. We report the m6A modification profiles of the mRNA and circRNA transcriptomes of normal and OGD/R-treated neurons. Expression analysis revealed that the m6A levels did not affect m6A mRNA or m6A circRNA expression. We found crosstalk between m6A mRNAs and m6A circRNAs and identified three patterns of m6A circRNA production in neurons; thus, distinct OGD/R treatments induced the same genes to generate different m6A circRNAs. Additionally, m6A circRNA biogenesis during distinct OGD/R processes was found to be time specific. These results expand our understanding of m6A modifications in normal and OGD/R-treated neurons, providing a reference to explore epigenetic mechanisms and potential treatments for OGD/R-related diseases.


DNA Methylation , RNA, Circular , RNA, Messenger/genetics , RNA, Circular/genetics , RNA , Neurons
13.
Cells ; 13(1)2023 12 28.
Article En | MEDLINE | ID: mdl-38201271

The transplantation of GABAergic neuron cells has been reported to alleviate nerve pain and improve motor function after spinal cord injury (SCI). However, human mesenchymal stem cell (hMSC) differentiation into GABAergic neuron cells in a sufficient quantity remains to be accomplished. From a database screening, cAMP-responsive element-binding protein 1 (CREB1) was chosen as a potential modulator due to its critical role in the protein-protein interaction of genes related to GABAergic neural differentiation. Here, CREB1 was overexpressed in transfected hMSCs, where CREB1 could induce differentiation into GABAergic neuron cells with an upregulation of Map2 and GAD1 by 2- and 3.4-fold, respectively. Additionally, GABAergic neural differentiation was enhanced, while Notch signaling was inhibited, and BRN2 transcriptional activation played an important role in neuronal maturation. Moreover, transfected hMSCs injected into immunocompromised mice caused by CsA exhibited the neuronal markers Tuj1 and Map2 via the intraspinal route, suggesting an improvement in survival and neural differentiation. Significantly, improvement in both BMS scores (6.2 ± 1.30 vs. 4 ± 0) and thermal hyperalgesia latency (7.74 ± 2.36 s vs. 4.52 ± 0.39 s) was seen compared with the SCI naïve treatment at 4 weeks post-transplantation. Our study demonstrates that CREB1 is crucial in generating induced GABAergic neuron cells (iGNs) originating from hMSCs. Transplanting iGNs to injured spinal cord provides a promising strategy for alleviating neuropathic pain and locomotion recovery after SCI.


Mesenchymal Stem Cells , Neuralgia , Spinal Cord Injuries , Animals , Humans , Mice , Cyclic AMP Response Element-Binding Protein , Hyperalgesia , Immunologic Factors , Locomotion , Neuralgia/therapy , Spinal Cord Injuries/therapy
14.
Ann Transl Med ; 10(18): 962, 2022 Sep.
Article En | MEDLINE | ID: mdl-36267768

Background: Bone marrow mesenchymal stem cells (BMSCs) combined with Schwann cells (SCs) represent a better therapeutic cell transplantation strategy for treating spinal cord injury (SCI) than transplantation with BMSCs or SCs alone. In previous studies, we demonstrated that BMSCs are able to differentiate in neuron-like cells when cocultured with SCs. The detailed mechanism underlying SCI repair that occurs during the combined transplantation of BMSCs and SCs has not yet been studied. In this study, we adopted an isobaric tag for relative and absolute quantitation (iTRAQ)-based protein identification/quantification approach to examine the effects of the SC and BMSC coculture process on the BMSCs and then obtained and analyzed the differentially expressed proteins (DEPs) and their possible related pathways. Methods: This study included three groups based on the number of coculture days (i.e., 0, 3, and 7 days). Changes in BMSC protein expression levels were measured using the iTRAQ technique. A bioinformatics analysis of all the data was performed. Results: In total, 6,760 types of proteins were detected, corresponding to 5,181 data points with quantitative information. Of these, a total of 243 DEPs were identified, of which 169 proteins were upregulated and 74 proteins were downregulated. These DEPs were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Intercellular adhesion molecule-1 (ICAM-1), integrin, and dioxygenase may play crucial roles in the repair of SCI. The data analysis indicates that the relevant biological processes may be regulated by lysosome function, cell adhesion molecules (CAMs), leukocyte transendothelial migration, and the phosphatidylinositol-3-kinase (PI3K) and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Conclusions: The data provided in this study indicate that several molecular mechanisms and signaling pathways are involved in the BMSC and SC coculture process. This information may be useful for the further identification of specific targets and related mechanisms and guide new directions for SCI treatment.

15.
Front Cell Dev Biol ; 10: 849854, 2022.
Article En | MEDLINE | ID: mdl-35903552

The FDA-approved drug edaravone has a neuroprotective effect on spinal cord injury (SCI) and many other central nervous system diseases. However, its molecular mechanism remains unclear. Since edaravone is a lipid peroxidation scavenger, we hypothesize that edaravone exerts its neuroprotective effect by inhibiting ferroptosis in SCI. Edaravone treatment after SCI upregulates glutathione peroxidase 4 (GPX4) and system Xc-light chain (xCT), which are anti-ferroptosis proteins. It downregulates pro-ferroptosis proteins Acyl-CoA synthetase long-chain family member 4 (ACSL4) and 5-lipoxygenase (5-LOX). The most significant changes in edaravone treatment occur in the acute phase, two days post injury. Edaravone modulates neuronal GPX4/ACSL4/5-LOX in the spinal segment below the lesion, which is critical for maintaining locomotion. Moreover, the GPX4/ACSL4/5-LOX in motor neuron is also modulated by edaravone in the spinal cord. Therefore, secondary injury below the lesion site is reversed by edaravone via ferroptosis inhibition. The cytokine array revealed that edaravone upregulated some anti-inflammatory cytokines such as IL-10, IL-13, and adiponectin. Edaravone reduced microgliosis and astrogliosis, indicating reduced neuroinflammation. Edaravone has a long-term effect on neuronal survival, spinal cord tissue sparing, and motor function recovery. In summary, we revealed a novel mechanism of edaravone in inhibiting neuronal ferroptosis in SCI. This mechanism may be generalizable to other neurological diseases.

16.
J Neuroinflammation ; 19(1): 189, 2022 Jul 16.
Article En | MEDLINE | ID: mdl-35842640

BACKGROUND: Nafamostat mesylate (nafamostat, NM) is an FDA-approved serine protease inhibitor that exerts anti-neuroinflammation and neuroprotective effects following rat spinal cord injury (SCI). However, clinical translation of nafamostat has been limited by an unclear administration time window and mechanism of action. METHODS: Time to first dose of nafamostat administration was tested on rats after contusive SCI. The optimal time window of nafamostat was screened by evaluating hindlimb locomotion and electrophysiology. As nafamostat is a serine protease inhibitor known to target thrombin, we used argatroban (Arg), a thrombin-specific inhibitor, as a positive control in the time window experiments. Western blot and immunofluorescence of thrombin expression level and its enzymatic activity were assayed at different time points, as well its receptor, the protease activated receptor 1 (PAR1) and downstream protein matrix metalloproteinase-9 (MMP9). Blood-spinal cord barrier (BSCB) permeability leakage indicator Evans Blue and fibrinogen were analyzed along these time points. The infiltration of peripheral inflammatory cell was observed by immunofluorescence. RESULTS: The optimal administration time window of nafamostat was 2-12 h post-injury. Argatroban, the thrombin-specific inhibitor, had a similar pattern. Thrombin expression peaked at 12 h and returned to normal level at 7 days post-SCI. PAR1, the thrombin receptor, and MMP9 were significantly upregulated after SCI. The most significant increase of thrombin expression was detected in vascular endothelial cells (ECs). Nafamostat and argatroban significantly downregulated thrombin and MMP9 expression as well as thrombin activity in the spinal cord. Nafamostat inhibited thrombin enrichment in endothelial cells. Nafamostat administration at 2-12 h after SCI inhibited the leakage of Evans Blue in the epicenter and upregulated tight junction proteins (TJPs) expression. Nafamostat administration 8 h post-SCI effectively inhibited the infiltration of peripheral macrophages and neutrophils to the injury site. CONCLUSIONS: Our study provides preclinical information of nafamostat about the administration time window of 2-12 h post-injury in contusive SCI. We revealed that nafamostat functions through inhibiting the thrombin-mediated BSCB breakdown and subsequent peripheral immune cells infiltration.


Matrix Metalloproteinase 9 , Spinal Cord Injuries , Animals , Benzamidines , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Evans Blue/metabolism , Evans Blue/pharmacology , Guanidines , Matrix Metalloproteinase 9/metabolism , Rats , Rats, Sprague-Dawley , Receptor, PAR-1/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spinal Cord , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/metabolism , Thrombin/metabolism
17.
Pathogens ; 11(4)2022 Mar 27.
Article En | MEDLINE | ID: mdl-35456082

HIV-associated neurocognitive disorder (HAND) is an array of neurocognitive changes associated with HIV infection, and the roles of microRNAs in HAND have not yet been completely revealed. Based on published data and publicly available databases, we constructed an integrated miRNA-mRNA network involved in HAND. Bioinformatics analyses, including gene ontology, network analysis, and KEGG pathway analysis, were applied for further study of the network and the genes of the network. The axon guidance KEGG pathway, three genes NTNG1, EFNB2, CXCL12, and 17 miRNAs which regulate these genes are spotlighted in our study. This study provides new perspectives to the knowledge of miRNAs' roles in the progression of HAND, and our findings provide potential therapeutic targets and clues of HAND.

18.
Neural Regen Res ; 17(6): 1334-1342, 2022 Jun.
Article En | MEDLINE | ID: mdl-34782579

Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury. The subacute phase after spinal cord injury is critical to the recovery of neurological function, which involves tissue bridging and axon regeneration. In this study, we found that zebrafish spontaneously recovered 44% of their swimming ability within the subacute phase (2 weeks) after spinal cord injury. During this period, we identified 7762 differentially expressed genes in spinal cord tissue: 2950 were up-regulated and 4812 were down-regulated. These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain, axon regeneration, and cell-component morphogenesis. The genes were also mostly involved in the regulation of metabolic pathways, the cell cycle, and gene-regulation pathways. We verified the gene expression of two differentially expressed genes, clasp2 up-regulation and h1m down-regulation, in zebrafish spinal cord tissue in vitro. Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein, which is responsible for axon extension regulated by microtubules. Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury. This study provides new candidate genes, clasp2 and h1m, as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration. All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical & Pharmaceutical Sciences (approval No. IMPS-EAEP-Q-2019-02) on September 24, 2019.

19.
Front Mol Neurosci ; 14: 699574, 2021.
Article En | MEDLINE | ID: mdl-34489640

Epilepsy is one of the most common neurological disorders in pediatric patients with other underlying neurological defects. Identifying the underlying etiology is crucial for better management of the disorder. We performed trio-whole exome sequencing in 221 pediatric patients with epilepsy. Probands were divided into seizures with developmental delay/intellectual disability (DD/ID) and seizures without DD/ID groups. Pathogenic (P) or likely pathogenic (LP) variants were identified in 71/110 (64.5%) patients in the seizures with DD/ID group and 21/111 (18.9%) patients in the seizures without DD/ID group (P < 0.001). Eighty-seven distinct P/LP single nucleotide variants (SNVs)/insertion deletions (Indels) were detected, with 55.2% (48/87) of them being novel. All aneuploidy and P/LP copy number variants (CNVs) larger than 100 Kb were identifiable by both whole-exome sequencing and copy number variation sequencing (CNVseq) in 123 of individuals (41 pedigrees). Ten of P/LP CNVs in nine patients and one aneuploidy variant in one patient (Patient #56, #47, XXY) were identified by CNVseq. Herein, we identified seven genes (NCL, SEPHS2, PA2G4, SLC35G2, MYO1C, GPR158, and POU3F1) with de novo variants but unknown pathogenicity that were not previously associated with epilepsy. Potential effective treatment options were available for 32 patients with a P/LP variant, based on the molecular diagnosis. Genetic testing may help identify the molecular etiology of early onset epilepsy and DD/ID and further aid to choose the appropriate treatment strategy for patients.

20.
Biofabrication ; 13(4)2021 08 31.
Article En | MEDLINE | ID: mdl-34139682

Spinal cord injury is a permanent destructive disease that causes devastating neurologic deficits and disability. Long-term complications are associated with low prognosis, mortality, and decreased quality of life. The functional recovery depends on the regeneration of neurons and the growth of medullated axons. Single treatment strategies, including cell transplantation, cannot adapt to a changeable microenvironment. Patients with spinal cord injuries need more effective, long-term, and stable treatment options. Therefore, we investigated the benefit of a combined-tissue engineering strategy by loading homologous bone mesenchymal stem cells (BMSCs) and Schwann cells in three-dimensional (3D) scaffolds. We placed BMSCs and Rat Schwann cells (RSCs) in specific spatial arrangements using cell gravity and the diffusion effect to promote the formation of intercellular connections and cell-directed differentiation. This novel bioengineering system allowed us to control multiple factors, including cell types, cell relative position, and axon growth direction in the scaffold. Our system facilitated motor function recovery by enhancing tissue mimicry and allowing the reconstruction of medullated axons. This new 3D-integrated printing platform is multi-function and can simulate biomimetic tissue using different types of materials and multi-cells scaffolds. We believe that this study can help promote the clinical development and application of 3D printing in the field of regenerative medicine.


Biomimetics , Spinal Cord Injuries , Animals , Axons , Bioprinting , Cell Differentiation , Humans , Motor Activity , Nerve Regeneration , Printing, Three-Dimensional , Quality of Life , Rats , Spinal Cord Injuries/therapy , Tissue Scaffolds
...