Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Neurotrauma ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38534205

In the past decade, signature clinical neuropathology of blast-induced traumatic brain injury has been under intense debate, but interface astroglial scarring (IAS) seems to be convincing. In this study, we examined whether IAS could be replicated in the rat brain exposed to a laser-induced shock wave(s) (LISW[s]), a tool that can produce a pure shock wave (primary mechanism) without dynamic pressure (tertiary mechanism). Under certain conditions, we observed astroglial scarring in the subpial glial plate (SGP), gray-white matter junctions (GM-WM), ventricular wall (VW), and regions surrounding cortical blood vessels, accurately reproducing clinical IAS. We also observed shock wave impulse-dependent meningeal damage (dural microhemorrhage) in vivo by transcranial near-infrared (NIR) reflectance imaging. Importantly, there were significant correlations between the degree of dural microhemorrhage and the extent of astroglial scarring more than 7 days post-exposure, suggesting an association of meningeal damage with astroglial scarring. The results demonstrated that the primary mechanism alone caused the IAS and meningeal damage, both of which are attributable to acoustic impedance mismatching at multi-layered tissue boundaries. The time course of glial fibrillary acidic protein (GFAP) immunoreactivity depended not only on the LISW conditions but also on the regions. In the SGP, significant increases in GFAP immunoreactivity were observed at 3 days post-exposure, whereas in the GM-WM and VW, GFAP immunoreactivity was not significantly increased before 28 days post-exposure, suggesting different pathological mechanisms. With the high-impulse single exposure or the multiple exposure (low impulse), fibrotic reaction or fibrotic scar formation was observed, in addition to astroglial scarring, in the cortical surface region. Although there are some limitations, this seems to be the first report on the shock-wave-induced IAS rodent model. The model may be useful to explore potential therapeutic approaches for IAS.

2.
J Neurosci Res ; 101(6): 976-989, 2023 06.
Article En | MEDLINE | ID: mdl-36747471

While numerous studies have suggested the involvement of cerebrovascular dysfunction in the pathobiology of blast-induced traumatic brain injury (bTBI), its exact mechanisms and how they affect the outcome of bTBI are not fully understood. Our previous study showed the occurrence of cortical spreading depolarization (CSD) and subsequent long-lasting oligemia/hypoxemia in the rat brain exposed to a laser-induced shock wave (LISW). We hypothesized that this hemodynamic abnormality is associated with shock wave-induced generation of nitric oxide (NO). In this study, to verify this hypothesis, we used an NO-sensitive fluorescence probe, diaminofluorescein-2 diacetate (DAF-2 DA), for real-time in vivo imaging of male Sprague-Dawley rats' brain exposed to a mild-impulse LISW. We observed the most intense fluorescence, indicative of NO production, along the pial arteriolar walls during the period of 10-30 min post-exposure, parallel with CSD occurrence. This post-exposure period also coincided with the early phase of hemodynamic abnormalities. While the changes in arteriolar wall fluorescence measured in rats receiving pharmacological NO synthase inhibition by nitro-L-arginine methyl ester (L-NAME) 24 h before exposure showed a temporal profile similar to that of changes observed in LISW-exposed rats with CSD, their intensity level was considerably lower; this suggests partial involvement of NOS in shock wave-induced NO production. To the best of our knowledge, this is the first real-time in vivo imaging of NO in rat brain, confirming the involvement of NO in shock-wave-induced hemodynamic impairments. Finally, we have outlined the limitations of this study and our future research directions.


Cortical Spreading Depression , Nitric Oxide , Rats , Male , Animals , Nitric Oxide/pharmacology , Rats, Sprague-Dawley , Cortical Spreading Depression/physiology , Brain , Nitric Oxide Synthase , Enzyme Inhibitors/pharmacology
...