Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
bioRxiv ; 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38559242

Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.

2.
Cell Chem Biol ; 30(10): 1261-1276.e7, 2023 10 19.
Article En | MEDLINE | ID: mdl-37591251

Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, ß-catenin, and FoxP3, which were endogenously GFP-tagged. Several new E3 ligases, including CUL2 diGly receptor KLHDC2, emerged as effective degraders, suggesting that these E3 ligases can be taken forward for the development of small-molecule degraders, such as proteolysis targeting chimeras (PROTACs). As a proof of concept, we demonstrate that a KLHDC2-recruiting peptide-based PROTAC connected to chloroalkane is capable of degrading HALO-GFP protein in cells.


Transcription Factors , beta Catenin , Humans , beta Catenin/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Drug Discovery , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
3.
Antioxidants (Basel) ; 12(3)2023 Feb 22.
Article En | MEDLINE | ID: mdl-36978798

In the present study, the chemical composition and bioactive properties of commercially available Withania somnifera samples were evaluated. The hydromethanolic and aqueous extracts of the tested samples were analyzed in terms of phenolic compound composition, ascorbic acid content, antioxidant and antibacterial activity, and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Polyphenols and ascorbic acid content, as well as the antioxidant activity, were higher in the aqueous extracts than in the hydromethanolic extracts. Generally, aqueous extracts presented higher antioxidant activity than the hydromethanolic ones, especially in the case of 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay. Moreover, higher amounts of phenolic acids and flavonoids were found in the hydromethanolic extracts compared to the aqueous ones. Regarding the antibacterial properties, samples 4, 6, and 10 showed the best overall performance with growth-inhibitory activities against all the examined bacteria strains. Finally, the aqueous and hydromethanolic extracts were the most efficient extracts in terms of AChE and BChE inhibitory activities, respectively. In conclusion, our results indicate that W. somnifera possesses important bioactive properties which could be attributed to the high amounts of phenolic compounds. However, a great variability was recorded in commercially available products, suggesting significant differences in the origin of product and the processing method.

4.
Front Microbiol ; 14: 1111947, 2023.
Article En | MEDLINE | ID: mdl-36922971

Chimeric virus-like particles (cVLPs) show great potential in improving public health as they are safe and effective vaccine candidates. The capsid protein of caliciviruses has been described previously as a self-assembling, highly immunogenic delivery platform. The ability to significantly induce cellular and humoral immunity can be used to boost the immune response to low immunogenic foreign antigens displayed on the surface of VLPs. Capsid proteins of caliciviruses despite sequence differences share similar architecture with structural loops that can be genetically modified to present foreign epitopes on the surface of cVLPs. Here, based on the VP1 protein of norovirus (NoV), we investigated the impact of the localization of the epitope in different structural loops of the P domain on the immunogenicity of the presented epitope. In this study, three distinct loops of NoV VP1 protein were genetically modified to present a multivalent influenza virus epitope consisting of a tandem repeat of M2/NP epitopes. cVLPs presenting influenza virus-conserved epitopes in different localizations were produced in the insect cells and used to immunize BALB/c mice. Specific reaction to influenza epitopes was compared in sera from vaccinated mice to determine whether the localization of the foreign epitope has an impact on the immunogenicity.

5.
Neuroendocrinology ; 112(11): 1058-1077, 2022.
Article En | MEDLINE | ID: mdl-35051932

INTRODUCTION: Water homoeostasis is achieved by secretion of the peptide hormones arginine vasopressin (AVP) and oxytocin (OXT) that are synthesized by separate populations of magnocellular neurones (MCNs) in the supraoptic and paraventricular (PVN) nuclei of the hypothalamus. To further understand the molecular mechanisms that facilitate biosynthesis of AVP and OXT by MCNs, we have explored the spatiotemporal dynamic, both mRNA and protein expression, of two genes identified by our group as being important components of the osmotic defence response: Caprin2 and Creb3l1. METHODS: By RNA in situ hybridization and immunohistochemistry, we have characterized the expression of Caprin2 and Creb3l1 in MCNs in the basal state, in response to dehydration, and during rehydration in the rat. RESULTS: We found that Caprin2 and Creb3l1 are expressed in AVP and OXT MCNs and in response to dehydration expression increases in both MCN populations. Protein levels mirror the increase in transcript levels for both CREB3L1 and CAPRIN2. In view of increased CREB3L1 and CAPRIN2 expression in OXT neurones by dehydration, we explored OXT-specific functions for these genes. By luciferase assays, we demonstrate that CREB3L1 may be a transcription factor regulating Oxt gene expression. By RNA immunoprecipitation assays and Northern blot analysis of Oxt mRNA poly(A) tails, we have found that CAPRIN2 binds to Oxt mRNA and regulates its poly(A) tail length. Moreover, in response to dehydration, Caprin2 mRNA is subjected to nuclear retention, possibly to regulate Caprin2 mRNA availability in the cytoplasm. CONCLUSION: The exploration of the spatiotemporal dynamics of Creb3l1- and Caprin2-encoded mRNAs and proteins has provided novel insights beyond the AVP-ergic system, revealing novel OXT-ergic system roles of these genes in the osmotic defence response.


Arginine Vasopressin , Cyclic AMP Response Element-Binding Protein , Oxytocin , RNA-Binding Proteins , Animals , Rats , Arginine Vasopressin/genetics , Arginine Vasopressin/metabolism , Dehydration/metabolism , Gene Expression , Gene Expression Regulation , Oxytocin/genetics , Oxytocin/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Supraoptic Nucleus/metabolism , Water/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , RNA-Binding Proteins/genetics
6.
SLAS Discov ; 26(7): 885-895, 2021 08.
Article En | MEDLINE | ID: mdl-34041938

Targeted protein degradation is an emerging new strategy for the modulation of intracellular protein levels with applications in chemical biology and drug discovery. One approach to enable this strategy is to redirect the ubiquitin-proteasome system to mark and degrade target proteins of interest (POIs) through the use of proteolysis targeting chimeras (PROTACs). Although great progress has been made in enabling PROTACs as a platform, there are still a limited number of E3 ligases that have been employed for PROTAC design. Herein we report a novel phenotypic screening approach for the identification of E3 ligase binders. The key concept underlying this approach is the high-throughput modification of screening compounds with a chloroalkane moiety to generate HaloPROTACs in situ, which were then evaluated for their ability to degrade a GFP-HaloTag fusion protein in a cellular context. As proof of concept, we demonstrated that we could generate and detect functional HaloPROTACs in situ, using a validated Von Hippel-Lindau (VHL) binder that successfully degraded the GFP-HaloTag fusion protein in living cells. We then used this method to prepare and screen a library of approximately 2000 prospective E3 ligase-recruiting molecules.


Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Proteolysis/drug effects , Humans , Protein Binding , Small Molecule Libraries , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article En | MEDLINE | ID: mdl-33946793

For decades, local bone drug delivery systems have been investigated in terms of their application in regenerative medicine. Among them, inorganic polymers based on amorphous silica have been widely explored. In this work, we combined two types of amorphous silica: bioglass and doxycycline-loaded mesoporous silica MCM-41 into the form of spherical granules (pellets) as a bifunctional bone drug delivery system. Both types of silica were obtained in a sol-gel method. The drug adsorption onto the MCM-41 was performed via adsorption from concentrated doxycycline hydrochloride solution. Pellets were obtained on a laboratory scale using the wet granulation-extrusion-spheronization method and investigated in terms of physical properties, drug release, antimicrobial activity against Staphylococcus aureus, mineralization properties in simulated body fluid, and cytotoxicity towards human osteoblasts. The obtained pellets were characterized by satisfactory mechanical properties which eliminated the risk of pellets cracking during further investigations. The biphasic drug release from pellets was observed: burst stage (44% of adsorbed drug released within the first day) followed by prolonged release with zero-order kinetics (estimated time of complete drug release was 19 days) with maintained antimicrobial activity. The progressive biomimetic apatite formation on the surface of the pellets was observed. No cytotoxic effect of pellets towards human osteoblasts was noticed.


Bone Substitutes/administration & dosage , Bone Substitutes/chemistry , Ceramics/chemistry , Drug Delivery Systems , Silicon Dioxide/administration & dosage , Silicon Dioxide/chemistry , Adsorption , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Bone Regeneration , Bone Substitutes/pharmacokinetics , Calcification, Physiologic , Calorimetry, Differential Scanning , Doxycycline/administration & dosage , Doxycycline/pharmacokinetics , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Humans , In Vitro Techniques , Materials Testing , Microscopy, Electron, Scanning , Particle Size , Regenerative Medicine , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
8.
Cardiol J ; 28(4): 534-542, 2021.
Article En | MEDLINE | ID: mdl-30912576

BACKGROUND: Oxidative stress and dyslipidemia play a critical role in the development of cardiovascular disease (CVD). Regular intake of polyphenol-rich diets is associated with a reduced risk of CVDs. METHODS: The present study was a pilot study with 24 healthy volunteers and was designed to determine if a 12-week administration of Cistus incanus herbal tea, containing phenolic acids and flavonoids, reduces cardiovascular risk factors including oxidative stress and dyslipidemia in healthy adults. Phenolic compounds profile and antibacterial activity of Cistus incanus infusion were also measured. RESULTS: Herbal infusion led to improvement in lipid profile by increase (D4%, p = 0.033) high-density lipoprotein cholesterol concentration and decrease triglyceride (D14%, p = 0.013) concentrations. In addition, the Cistus incanus diet was associated with decreased serum concentrations of malondialdehyde (D16%, p < 0.01) and advanced oxidation protein products (D18%, p < 0.001). CONCLUSIONS: Cistus incanus administration decreases cardiovascular risk factors including oxidative stress and dyslipidemia and this action supports the idea of using Cistus incanus tea on a daily basis as an effective dietary component for prevention of atherosclerotic CVD.


Cistus , Teas, Herbal , Adult , Dietary Supplements , Humans , Lipids , Oxidative Stress , Pilot Projects , Plant Extracts/pharmacology
9.
Molecules ; 25(22)2020 Nov 12.
Article En | MEDLINE | ID: mdl-33198171

Rosa canina L. (dog rose) is a rich source of phenolic compounds that offer great hope for the prevention of chronic human diseases. Herein, wild and commercial samples of dog rose were chemically characterized with respect to their phenolic composition by liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI/MS). Furthermore, in vitro antioxidant properties and antibacterial activity of dog rose fruits and leaves hydromethanolic extracts and infusions were also evaluated. The results revealed that wild and commercial fruits of dog rose are similar in terms of l(+)-ascorbic acid, total phenolics (TPC), total flavonoids (TFC) and total phenolic acids (TPAC) content, individual phenolic constituents and antioxidant activity. Moreover, the fruits had lower levels of phenolic compounds and also revealed lower biological activity than the leaves. On the other hands, the highest content of TPC, TFC, TPAC, individual phenolic constituents, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and FRAP (ferric reducing antioxidant power) were found in the leaf's infusions. They were also the only ones to show antibacterial activity. Overall, these finding confirmed usefulness of R. canina L. leaves and fruits as a rich source of bioactive phenolic compounds with potential use in food, pharmaceutical, and cosmetic industries.


Antioxidants/chemistry , Fruit/chemistry , Phenols/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rosa/chemistry , Biphenyl Compounds/chemistry , Chromatography, Liquid , Cosmetics , Escherichia coli/drug effects , Flavonoids/chemistry , Hydroxybenzoates/chemistry , Microbial Sensitivity Tests , Picrates/chemistry , Pseudomonas aeruginosa/drug effects , Spectrometry, Mass, Electrospray Ionization , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Streptococcus pyogenes/drug effects
10.
Int J Pharm ; 588: 119718, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32750441

For decades, bone drug delivery systems dedicated for osteomyelitis treatment have been investigated as bifunctional materials that exhibit prolonged drug release and mineralization potential. Herein, composite-type pellets based on cefazolin-loaded amino-modified mesoporous silica SBA-15 and microwave-assisted hydroxyapatite were investigated as potential bone drug delivery system in vitro. Pellets were obtained by granulation, extrusion and spheronization methods in laboratory scale and studied in terms of physical properties, drug release, mineralization potential, antimicrobial activity and cytotoxicity towards human osteoblasts. The obtained pellets were characterized for hardness and friability which indicated the pellets durability during further investigations. Prolonged (5-day) release of cefazolin from pellets was observed. The pellets exhibited mineralization potential in simulated body fluid, i.e., a continuous layer of bone-like apatite was formed on the surface of pellets after 28 days of incubation. An antimicrobial assay of pellets revealed an antibacterial effect against Staphylococcus aureus strain during 6 days. No cytotoxic effects of pellets towards human osteoblasts were observed. The obtained results proved that proposed pellets appear to have potential applications as bone drug delivery systems.


Anti-Bacterial Agents/chemistry , Cefazolin/chemistry , Drug Carriers , Silicon Dioxide/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/toxicity , Cefazolin/administration & dosage , Cefazolin/toxicity , Cell Line , Delayed-Action Preparations , Drug Compounding , Drug Implants , Drug Liberation , Durapatite/chemistry , Hardness , Humans , Kinetics , Osteoblasts/drug effects , Osteomyelitis/drug therapy , Osteomyelitis/microbiology , Porosity , Silicon Dioxide/toxicity , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties
11.
ACS Chem Biol ; 15(9): 2316-2323, 2020 09 18.
Article En | MEDLINE | ID: mdl-32697072

The Bcl-2 family of proteins, such as Bcl-xL and Bcl-2, play key roles in cancer cell survival. Structural studies of Bcl-xL formed the foundation for the development of the first Bcl-2 family inhibitors and FDA approved drugs. Recently, Proteolysis Targeting Chimeras (PROTACs) that degrade Bcl-xL have been proposed as a therapeutic modality with the potential to enhance potency and reduce toxicity versus antagonists. However, no ternary complex structures of Bcl-xL with a PROTAC and an E3 ligase have been successfully determined to guide this approach. Herein, we report the design, characterization, and X-ray structure of a VHL E3 ligase-recruiting Bcl-xL PROTAC degrader. The 1.9 Å heterotetrameric structure, composed of (ElonginB:ElonginC:VHL):PROTAC:Bcl-xL, reveals an extensive network of neo-interactions, between the E3 ligase and the target protein, and between noncognate parts of the PROTAC and partner proteins. This work illustrates the challenges associated with the rational design of bifunctional molecules where interactions involve composite interfaces.


Benzothiazoles/metabolism , Isoquinolines/metabolism , Oligopeptides/metabolism , Proteolysis/drug effects , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , bcl-X Protein/antagonists & inhibitors , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Protein Binding , bcl-X Protein/chemistry , bcl-X Protein/metabolism
12.
Cell Chem Biol ; 27(9): 1151-1163.e6, 2020 09 17.
Article En | MEDLINE | ID: mdl-32668202

K-RAS is known as the most frequently mutated oncogene. However, the development of conventional K-RAS inhibitors has been extremely challenging, with a mutation-specific inhibitor reaching clinical trials only recently. Targeted proteolysis has emerged as a new modality in drug discovery to tackle undruggable targets. Our laboratory has developed a system for targeted proteolysis using peptidic high-affinity binders, called "AdPROM." Here, we used CRISPR/Cas9 technology to knock in a GFP tag on the native K-RAS gene in A549 adenocarcinoma (A549GFPKRAS) cells and constructed AdPROMs containing high-affinity GFP or H/K-RAS binders. Expression of GFP-targeting AdPROM in A549GFPKRAS led to robust proteasomal degradation of endogenous GFP-K-RAS, while expression of anti-HRAS-targeting AdPROM in different cell lines resulted in the degradation of both GFP-tagged and untagged K-RAS, and untagged H-RAS. Our findings imply that endogenous RAS proteins can be targeted for proteolysis, supporting the idea of an alternative therapeutic approach to these undruggable targets.


Proteolysis , Proto-Oncogene Proteins p21(ras)/metabolism , A549 Cells , Affinity Labels , CRISPR-Cas Systems/genetics , Cell Line , Cell Proliferation , Gene Knock-In Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Fluorescence , Peptides/chemistry , Peptides/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
13.
Eur J Med Chem ; 179: 576-590, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31279292

A series of novel fluoroquinolone-Safirinium dye hybrids was synthesized by means of tandem Mannich-electrophilic amination reactions from profluorophoric isoxazolones and antibiotics bearing a secondary amino group at position 7 of the quinoline ring. The obtained fluorescent spiro fused conjugates incorporating quaternary nitrogen atoms were characterized by 1H NMR, IR, MS, and elemental analysis. All the synthetic analogues (3a-h and 4a-h) were evaluated for their in vitro antimicrobial, bactericidal, and antibiofilm activities against a panel of Gram positive and Gram-negative pathogenic bacteria. The most active Safirinium Q derivatives of lomefloxacin (4d) and ciprofloxacin (4e) exhibited molar-based antibacterial activities comparable to the unmodified drugs and displayed considerable inhibitory potencies in E. coli DNA gyrase supercoiling assays with IC50 values in the low micromolar range. Zwiterionic hybrids were noticeably less lipophilic than the parent quinolones in micellar electrokinetic chromatography (MECK) experiments. The tests performed in the presence of phenylalanine-arginine ß-naphthylamide (PAßN) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) revealed that the conjugates are to some extent subject to bacterial efflux and cellular accumulation, respectively. Moreover, the hybrids did not exhibit notable cytotoxicity towards the HEK 293 control cell line and demonstrated low propensity for resistance development, as exemplified for compounds 3g and 4b. Finally, molecular docking experiments revealed that the synthesized compounds were able to bind in the fluoroquinolone-binding mode at S. aureus DNA gyrase and S. pneumoniae topoisomerase IV active sites.


Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Quaternary Ammonium Compounds/pharmacology , Quinolones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/metabolism , HEK293 Cells , Humans , Microbial Sensitivity Tests , Molecular Structure , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Quinolones/chemistry , Structure-Activity Relationship
14.
Pharmaceutics ; 12(1)2019 Dec 30.
Article En | MEDLINE | ID: mdl-31905860

Bone tissue inflammation, osteomyelitis, is commonly caused by bacterial invasion and requires prolonged antibiotic therapy for weeks or months. Thus, the aim of this study was to develop novel silica-polymer local bone antibiotic delivery systems characterized by a sustained release of ciprofloxacin (CIP) which remain active against Staphylococcus aureus for a few weeks, and do not have a toxic effect towards human osteoblasts. Four formulations composed of ethylcellulose (EC), polydimethylsiloxane (PDMS), freeze-dried CIP, and CIP-adsorbed mesoporous silica materials (MCM-41-CIP) were prepared via solvent-evaporation blending method. All obtained composites were characterized in terms of molecular structure, morphological, and structural properties by using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction (XRD), thermal stability by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and in vitro antibiotic release. The antibacterial activity against Staphylococcus aureus (ATCC 6538) as well as the in vitro cytocompatibility to human osteoblasts of obtained composites were also examined. Physicochemical results confirmed the presence of particular components (FTIR), formation of continuous polymer phase onto the surface of freeze-dried CIP or MCM-41-CIP (SEM/EDX), and semi-crystalline (composites containing freeze-dried CIP) or amorphous (composites containing MCM-41-CIP) structure (XRD). TGA and DSC analysis indicated the high thermal stability of CIP adsorbed onto the MCM-41, and higher after MCM-41-CIP coating with polymer blend. The release study revealed the significant reduction in initial burst of CIP for the composites which contained MCM-41-CIP instead of freeze-dried CIP. These composites were also characterized by the 30-day activity against S. aureus and the highest cytocompatibility to human osteoblasts in vitro.

15.
Structure ; 26(4): 533-544.e3, 2018 04 03.
Article En | MEDLINE | ID: mdl-29576321

Small conductance potassium (SK) ion channels define neuronal firing rates by conducting the after-hyperpolarization current. They are key targets in developing therapies where neuronal firing rates are dysfunctional, such as in epilepsy, Parkinson's, and amyotrophic lateral sclerosis (ALS). Here, we characterize a binding pocket situated at the intracellular interface of SK2 and calmodulin, which we show to be shared by multiple small-molecule chemotypes. Crystallization of this complex revealed that riluzole (approved for ALS) and an analog of the anti-ataxic agent (4-chloro-phenyl)-[2-(3,5-dimethyl-pyrazol-1-yl)-pyrimidin-4-yl]-amine (CyPPA) bind to and allosterically modulate via this site. Solution-state nuclear magnetic resonance demonstrates that riluzole, NS309, and CyPPA analogs bind at this bipartite pocket. We demonstrate, by patch-clamp electrophysiology, that both classes of ligand interact with overlapping but distinct residues within this pocket. These data define a clinically important site, laying the foundations for further studies of the mechanism of action of riluzole and related molecules.


Calmodulin/chemistry , Indoles/chemistry , Oximes/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Riluzole/chemistry , Small-Conductance Calcium-Activated Potassium Channels/chemistry , Allosteric Regulation , Amino Acid Motifs , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Binding Sites , Calmodulin/genetics , Calmodulin/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Indoles/metabolism , Models, Molecular , Oximes/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Pyrazoles/metabolism , Pyrimidines/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Riluzole/metabolism , Small-Conductance Calcium-Activated Potassium Channels/genetics , Small-Conductance Calcium-Activated Potassium Channels/metabolism
16.
eNeuro ; 4(6)2017.
Article En | MEDLINE | ID: mdl-29279858

The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.


Computational Biology/methods , RNA-Binding Proteins/metabolism , Supraoptic Nucleus/metabolism , Transcriptome , Unsupervised Machine Learning , Animals , Data Mining , Female , Gene Expression Regulation , Male , Microarray Analysis , PC12 Cells , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Rats , Real-Time Polymerase Chain Reaction
17.
Elife ; 42015 Nov 12.
Article En | MEDLINE | ID: mdl-26559902

In response to an osmotic challenge, the synthesis of the antidiuretic hormone arginine vasopressin (AVP) increases in the hypothalamus, and this is accompanied by extension of the 3' poly(A) tail of the AVP mRNA, and the up-regulation of the expression of RNA binding protein Caprin-2. Here we show that Caprin-2 binds to AVP mRNAs, and that lentiviral mediated shRNA knockdown of Caprin-2 in the osmotically stimulated hypothalamus shortens the AVP mRNA poly(A) tail at the same time as reducing transcript abundance. In a recapitulated in vitro system, we confirm that Caprin-2 over-expression enhances AVP mRNA abundance and poly(A) tail length. Importantly, we show that Caprin-2 knockdown in the hypothalamus decreases urine output and fluid intake, and increases urine osmolality, urine sodium concentration, and plasma AVP levels. Thus Caprin-2 controls physiological mechanisms that are essential for the body's response to osmotic stress.


Gene Expression Regulation , Osmotic Pressure , RNA-Binding Proteins/metabolism , Stress, Physiological , Animals , Arginine Vasopressin/genetics , Male , Protein Binding , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
18.
J Neurosci ; 35(13): 5144-55, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25834041

The Na-K-2Cl cotransporter 2 (NKCC2) was thought to be kidney specific. Here we show expression in the brain hypothalamo-neurohypophyseal system (HNS), wherein upregulation follows osmotic stress. The HNS controls osmotic stability through the synthesis and release of the neuropeptide hormone, arginine vasopressin (AVP). AVP travels through the bloodstream to the kidney, where it promotes water conservation. Knockdown of HNS NKCC2 elicited profound effects on fluid balance following ingestion of a high-salt solution-rats produced significantly more urine, concomitant with increases in fluid intake and plasma osmolality. Since NKCC2 is the molecular target of the loop diuretics bumetanide and furosemide, we asked about their effects on HNS function following disturbed water balance. Dehydration-evoked GABA-mediated excitation of AVP neurons was reversed by bumetanide, and furosemide blocked AVP release, both in vivo and in hypothalamic explants. Thus, NKCC2-dependent brain mechanisms that regulate osmotic stability are disrupted by loop diuretics in rats.


Hypothalamo-Hypophyseal System/metabolism , Osmoregulation/physiology , Pituitary Gland, Posterior/metabolism , Solute Carrier Family 12, Member 1/metabolism , Animals , Arginine Vasopressin/blood , Arginine Vasopressin/drug effects , Bumetanide/pharmacology , Dehydration/physiopathology , Furosemide/pharmacology , Gene Expression/drug effects , Hypothalamo-Hypophyseal System/cytology , Hypothalamo-Hypophyseal System/drug effects , Male , Midline Thalamic Nuclei/physiology , Neurons/drug effects , Neurons/physiology , Optic Chiasm/physiology , Pituitary Gland, Posterior/cytology , Pituitary Gland, Posterior/drug effects , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Solute Carrier Family 12, Member 1/biosynthesis , Water-Electrolyte Balance/drug effects , Water-Electrolyte Balance/physiology
19.
J Neurochem ; 109 Suppl 1: 246-51, 2009 May.
Article En | MEDLINE | ID: mdl-19393034

Ammonia-induced swelling of astrocytes is a primary cause of brain edema associated with acute hepatic encephalopathy. Previous studies have shown that ammonia transiently increases cGMP in brain in vivo and in cultured astrocytes in vitro. We hypothesized that protein kinase G (PKG), an enzyme activated by cGMP and implicated in regulation of cell shape, size, and/or volume in peripheral and CNS cells, may play a role in the ammonia-induced astrocytic volume increase. Treatment of cultured rat cortical astrocytes with 1 or 5 mM NH4Cl (ammonia) for 24 h increased their cell volume by 50% and 80% above control, respectively, as measured by confocal imaging followed by 3D computational analysis. A cGMP analog, 8-(4-chlorophenylthio)-cGMP, increased the cell volume in control cells and potentiated the increase in 1 mM ammonia-treated cells. A soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) abrogated, and a PKG inhibitor [8-(4-chlorophenylthio)-cGMP-thioate, Rp-isomer] dose-dependently reduced the cell volume-increasing effect of 5 mM ammonia. The results suggest that (i) PKG may play a permissive role in ammonia-induced astrocytic swelling and (ii) elevation of brain cGMP associated with acute exposure to ammonia in vivo may aggravate the ensuing brain edema.


Ammonia/toxicity , Astrocytes/drug effects , Astrocytes/enzymology , Cyclic GMP-Dependent Protein Kinases/physiology , Animals , Astrocytes/pathology , Brain Edema/pathology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Calcium Channels, L-Type/physiology , Calcium Signaling/drug effects , Cell Size , Cells, Cultured , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fluorescent Dyes , Guanylate Cyclase/antagonists & inhibitors , Microscopy, Confocal , Nimodipine/pharmacology , Rats , Rats, Wistar , Thionucleotides/pharmacology
20.
Neurochem Int ; 52(6): 1160-6, 2008 May.
Article En | MEDLINE | ID: mdl-18222015

Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielinska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy.


Ammonia/metabolism , Calcium/metabolism , Cerebral Arteries/metabolism , Cyclic GMP/biosynthesis , Endothelial Cells/metabolism , Natriuretic Peptide, C-Type/metabolism , Ammonia/toxicity , Aniline Compounds , Animals , Binding Sites/drug effects , Binding Sites/physiology , Binding, Competitive/drug effects , Binding, Competitive/physiology , Calcium Channel Blockers/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cerebral Arteries/physiopathology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Cyclic GMP-Dependent Protein Kinases/drug effects , Cyclic GMP-Dependent Protein Kinases/metabolism , Endothelial Cells/drug effects , Hepatic Encephalopathy/metabolism , Hepatic Encephalopathy/physiopathology , Hyperammonemia/metabolism , Hyperammonemia/physiopathology , Natriuretic Peptide, C-Type/drug effects , Protein Binding/drug effects , Protein Binding/physiology , Rats , Receptors, Atrial Natriuretic Factor/drug effects , Receptors, Atrial Natriuretic Factor/metabolism , Xanthenes
...