Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycorrhiza ; 29(6): 567-579, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31724087

RESUMEN

Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale. We amplified and sequenced the ITS 2 region of the ribosomal DNA operon of the AMF from soil samples using nested PCR and Illumina pair-end amplicon sequencing. Habitat (especially soil pH) and geographical parameters (spatial distance, altitude, and longitude) were the main determinants of the structure of the AMF communities in the meadows at a regional scale, with the abundance of genera Septoglomus, Paraglomus, Archaeospora, Funneliformis, and Dominikia driving the main response. The effects of climate and vegetation type were not significant and were mainly encompassed within the geography and/or soil pH effects. This study illustrates how important it is to have a large set of environmental metadata to compare the importance of different factors influencing the AMF community structure at large spatial scales.


Asunto(s)
Micobioma , Micorrizas , ADN de Hongos , Ecosistema , Geografía , Pradera , Suelo , Microbiología del Suelo
2.
Sci Total Environ ; 694: 133679, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31400682

RESUMEN

Amanita strobiliformis (European Pine Cone Lepidella) is an ectomycorrhizal fungus of the Amanitaceae family known to hyperaccumulate Ag in the sporocarps. Two populations (ecotypes) of A. strobiliformis collected from two urban forest plantations in Prague, Czech Republic, were investigated. The concentrations of Ag, Cu, Cd, and Zn were determined in the mushrooms. The metal mobility and fractionation in the soils was investigated by single extractions and sequential extraction. The soil distribution of A. strobiliformis mycelium was assessed by quantitative polymerase chain reaction (qPCR). The metal uptake from the soil into the mushroom sporocarps was traced by Pb isotopic fingerprinting. The findings suggested that A. strobiliformis (i) accumulates primarily Ag from the topsoil layer (circa 12cm deep) and (ii) accumulates Ag associated with the "reducible soil fraction". The concentrations of all metals, particularly Ag and Cu, were significantly higher in the A. strobiliformis sporocarps from one of the investigated sites (Klícov). The elevated concentrations of Ag in the sporocarps from Klícov can possibly be attributed to the higher Ag content in the topsoil layer found at this site. However, the simultaneously elevated concentrations of Cu in A. strobiliformis from Klícov cannot be explained by the differences in the geochemical background and should be attributed to biological factors.


Asunto(s)
Amanita/fisiología , Cobre/metabolismo , Monitoreo del Ambiente , Plata/metabolismo , Contaminantes del Suelo/metabolismo , Micorrizas
3.
Front Microbiol ; 9: 2862, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30538687

RESUMEN

Biochar has been heralded as a multipurpose soil amendment to sustainably increase soil fertility and crop yields, affect soil hydraulic properties, reduce nutrient losses, and sequester carbon. Some of the most spectacular results of biochar (and organic nutrient) inputs are the terra preta soils in the Amazon, dark anthropogenic soils with extremely high fertility sustained over centuries. Such soil improvements have been particularly difficult to achieve on a short run, leading to speculations that biochar may need to age (weather) in soil to show its best. Further, interaction of biochar with arbuscular mycorrhizal fungi (AMF), important root symbionts of a great majority of terrestrial plants including most agricultural crops, remains little explored. To study the effect of aged biochar on highly mycotrophic Andropogon gerardii plants and their associated AMF, we made use of softwood biochar, collected from a historic charcoal burning site. This biochar (either untreated or chemically activated, the latter serving as a proxy for freshly prepared biochar) was added into two agricultural soils (acid or alkaline), and compared to soils without biochar. These treatments were further crossed with inoculation with a synthetic AMF community to address possible interactions between biochar and the AMF. Biochar application was generally detrimental for growth and mineral nutrition of our experimental plants, but had no effect on the extent of their root colonized by the AMF, nor did it affect composition of their root-borne AMF communities. In contrast, biochar affected development of two out of five AMF (Claroideoglomus and Funneliformis) in the soil. Establishment of symbiosis with AMF largely mitigated biochar-induced suppression of plant growth and mineral nutrition, mainly by improving plant acquisition of phosphorus. Both mycorrhizal and non-mycorrhizal plants grew well in the acid soil without biochar application, whereas non-mycorrhizal plants remained stunted in the alkaline soils under all situations (with or without biochar). These different and strong effects indicate that response of plants to biochar application are largely dependent on soil matrix and also on microbes such as AMF, and call for further research to enable qualified predictions of the effects of different biochar applications on field-grown crops and soil processes.

4.
Mycorrhiza ; 28(5-6): 465, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29951863

RESUMEN

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.


Asunto(s)
Andropogon/crecimiento & desarrollo , Glomeromycota/metabolismo , Nitrógeno/metabolismo , Amoníaco/química , Andropogon/metabolismo , Andropogon/microbiología , Biomasa , Hifa/metabolismo , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Microbiología del Suelo
5.
Mycorrhiza ; 28(5-6): 435-450, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29931404

RESUMEN

Establishment of nonmycorrhizal controls is a "classic and recurrent theme" in mycorrhizal research. For decades, authors reported mycorrhizal plant growth/nutrition as compared to various nonmycorrhizal controls. In such studies, uncertainties remain about which nonmycorrhizal controls are most appropriate and, in particular, what effects the control inoculations have on substrate and root microbiomes. Here, different types of control and mycorrhizal inoculations were compared with respect to plant growth and nutrition, as well as the structure of root and substrate microbiomes, assessed by next-generation sequencing. We compared uninoculated ("absolute") control to inoculation with blank pot culture lacking arbuscular mycorrhizal fungi, filtrate of that blank inoculum, and filtrate of complex pot-produced mycorrhizal inoculum. Those treatments were compared to a standard mycorrhizal treatment, where the previously sterilized substrate was inoculated with complex pot-produced inoculum containing Rhizophagus irregularis SYM5. Besides this, monoxenically produced inoculum of the same fungus was applied either alone or in combination with blank inoculum. The results indicate that the presence of mycorrhizal fungus always resulted in stimulation of Andropogon gerardii plant biomass as well as in elevated phosphorus content of the plants. The microbial (bacterial and fungal) communities developing in the differently inoculated treatments, however, differed substantially from each other and no control could be obtained comparable with the treatment inoculated with complex mycorrhizal inoculum. Soil microorganisms with significant biological competences that could potentially contribute to the effects of the various inoculants on the plants were detected in roots and in plant cultivation substrate in some of the treatments.


Asunto(s)
Microbiota , Micorrizas/fisiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Andropogon/microbiología , Bacterias/metabolismo , Biomasa , Secuenciación de Nucleótidos de Alto Rendimiento , Fósforo/análisis , Simbiosis
6.
Front Plant Sci ; 9: 449, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29681914

RESUMEN

Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.

7.
Mycorrhiza ; 28(3): 269-283, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29455336

RESUMEN

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.


Asunto(s)
Acanthamoeba/metabolismo , Andropogon/metabolismo , Bacterias/metabolismo , Micorrizas/metabolismo , Nitrógeno/metabolismo , Amoníaco/metabolismo , Andropogon/crecimiento & desarrollo , Andropogon/microbiología , Hifa/metabolismo , Compuestos Orgánicos/metabolismo , Oxidación-Reducción
8.
Food Chem ; 242: 225-231, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29037683

RESUMEN

The edible ink stain bolete (Cyanoboletus pulverulentus) was found to hyperaccumulate arsenic. We analyzed 39 individual collections determined as C. pulverulentus, mostly from the Czech Republic. According to our results, concentrations of arsenic in C. pulverulentus fruit-bodies may reach 1300mgkg-1 dry weight. In most collections, data for total and bioavailable arsenic in underlying soils were collected but no significant correlation between the soil arsenic content and arsenic concentrations in the associated fruit-bodies was found. Within the fruit-bodies, we found the majority of arsenic accumulated in the hymenium. Besides occasional traces of methylarsonic acid (MA), the arsenic speciation in all mushroom samples consisted solely of dimethylarsinic acid (DMA) and no inorganic arsenic was detected. Because of the carcinogenic potential of DMA, C. pulverulentus should not be recommended as an edible mushroom and its consumption should be restricted.


Asunto(s)
Arsénico/farmacocinética , Basidiomycota/efectos de los fármacos , Basidiomycota/metabolismo , Contaminantes del Suelo/análisis , Arsénico/análisis , Arsenicales/análisis , Arsenicales/metabolismo , Ácido Cacodílico/análisis , Ácido Cacodílico/metabolismo , República Checa , Contaminación de Alimentos/análisis , Contaminantes del Suelo/farmacocinética
9.
Sydowia ; 69: 229-264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29386695

RESUMEN

The present study introduces seven new species, one new combination, one new variety and several interesting taxonomical notes and/or geographical records. Most of the new taxa are Ascomycetes, but the study also includes a new variety of a Basidiomycete. Novel species include Gyromitra khanspurensis (Discinaceae, Pezizales, Pezizomycetes) from Pakistan growing near Cedrus deoadara and Paramyrothecium guiyangense and Paramyrothecium verruridum (Stachybotriaceae, Hypocreales, Sordariomycetes) both isolated from soil in China. New species from South Africa are Sclerostagonospora elegiae on culm litter of Elegia equisetacea, Sclerostagonospora fusiformis on culm litter of Thamnochortus spicigerus, Sclerostagonospora pinguis on culm litter of Cannomois virgata and Sclerostagonospora sulcata on culm litter of Ischyrolepis subverticellata (Phaeosphaeriaceae, Pleosporales, Dothideomycetes). Hapalocystis berkeleyi var. kickxii with its basionym Hypoxylon kickxii is shown to be a taxon on species level and thus recombined as Hapalocystis kickxii (Sydowiellaceae, Diaporthales, Sordariomycetes), and it is lecto- and epitypified. The new variety Pluteus romellii var. luteoalbus (Pluteaceae, Agaricales, Agaricomycetes) growing on a mossy fallen stem of a deciduous tree is described from Czech Republic. Cortinarius scaurocaninus (Cortinariaceae, Agaricales, Agaricomycetes) is new for Austria, Humicola grisea (Chaetomiaceae, Sordariales, Sordariomycetes) is an interesting new record for Chile. Two taxa are reported as new for Turkey: the lichenicolous fungus Opegrapha parasitica (Opegraphaceae, Arthoniales, Arthoniomycetes) growing partly immersed in the thallus of Aspicilia and the lichen Rinodina zwackhiana (Physciaceae, Teloschistales, Lecanoromycetes) from calcareous rock. Finally, Xerula strigosa (Physalacriaceae, Agaricales, Agaricomycetes), described from China, is confirmed to be present also in Pakistan.

10.
Mycorrhiza ; 27(1): 35-51, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27549438

RESUMEN

Quantification of carbon (C) fluxes in mycorrhizal plants is one of the important yet little explored tasks of mycorrhizal physiology and ecology. 13CO2 pulse-chase labelling experiments are increasingly being used to track the fate of C in these plant-microbial symbioses. Nevertheless, continuous monitoring of both the below- and aboveground CO2 emissions remains a challenge, although it is necessary to establish the full C budget of mycorrhizal plants. Here, a novel CO2 collection system is presented which allows assessment of gaseous CO2 emissions (including isotopic composition of their C) from both belowground and shoot compartments. This system then is used to quantify the allocation of recently fixed C in mycorrhizal versus nonmycorrhizal Medicago truncatula plants with comparable biomass and mineral nutrition. Using this system, we confirmed substantially greater belowground C drain in mycorrhizal versus nonmycorrhizal plants, with the belowground CO2 emissions showing large variation because of fluctuating environmental conditions in the glasshouse. Based on the assembled 13C budget, the C allocation to the mycorrhizal fungus was between 2.3% (increased 13C allocation to mycorrhizal substrate) and 2.9% (reduction of 13C allocation to mycorrhizal shoots) of the plant gross photosynthetic production. Although the C allocation to shoot respiration (measured during one night only) did not differ between the mycorrhizal and nonmycorrhizal plants under our experimental conditions, it presented a substantial part (∼10%) of the plant C budget, comparable to the amount of CO2 released belowground. These results advocate quantification of both above- and belowground CO2 emissions in future studies.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Glomeromycota/fisiología , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/metabolismo , Dióxido de Carbono/química , Fotosíntesis/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
11.
Front Plant Sci ; 7: 782, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375642

RESUMEN

Plants are often exposed to shade over different time scales and this may substantially affect not only their own growth, but also development and functioning of the energetically dependent organisms. Among those, the root symbionts such as arbuscular mycorrhizal (AM) fungi and rhizobia represent particularly important cases-on the one hand, they consume a significant share of plant carbon (C) budget and, on the other, they generate a number of important nutritional feedbacks on their plant hosts, often resulting in a net positive effect on their host growth and/or fitness. Here we discuss our previous results comparing mycorrhizal performance under different intensities and durations of shade (Konvalinková et al., 2015) in a broader context of previously published literature. Additionally, we review publicly available knowledge on the root colonization and mycorrhizal growth responses in AM plants under light deprivation. Experimental evidence shows that sudden and intensive decrease of light availability to a mycorrhizal plant triggers rapid deactivation of phosphorus transfer from the AM fungus to the plant already within a few days, implying active and rapid response of the AM fungus to the energetic status of its plant host. When AM plants are exposed to intensive shading on longer time scales (weeks to months), positive mycorrhizal growth responses (MGR) are often decreasing and may eventually become negative. This is most likely due to the high C cost of the symbiosis relative to the C availability, and failure of plants to fully compensate for the fungal C demand under low light. Root colonization by AM fungi often declines under low light intensities, although the active role of plants in regulating the extent of root colonization has not yet been unequivocally demonstrated. Quantitative information on the rates and dynamics of C transfer from the plant to the fungus is mostly missing, as is the knowledge on the involved molecular mechanisms. Therefore, these subjects deserve particular attention in the future.

12.
Front Plant Sci ; 6: 65, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25763002

RESUMEN

Plant and fungal partners in arbuscular mycorrhizal symbiosis trade mineral nutrients for carbon, with the outcome of this relationship for plant growth and nutrition being highly context-dependent and changing with the availability of resources as well as with the specific requirements of the different partners. Here we studied how the model legume Medicago truncatula, inoculated or not with a mycorrhizal fungus Rhizophagus irregularis, responded to a gradient of light intensities applied over different periods of time, in terms of growth, phosphorus nutrition and the levels of root colonization by the mycorrhizal fungus. Short-term (6 d) shading, depending on its intensity, resulted in a rapid decline of phosphorus uptake to the shoots of mycorrhizal plants and simultaneous accumulation of phosphorus in the roots (most likely in the fungal tissues), as compared to the non-mycorrhizal controls. There was, however, no significant change in the levels of mycorrhizal colonization of roots due to short-term shading. Long-term (38 d) shading, depending on its intensity, provoked a multitude of plant compensatory mechanisms, which were further boosted by the mycorrhizal symbiosis. Mycorrhizal growth- and phosphorus uptake benefits, however, vanished at 10% of the full light intensity applied over a long-term. Levels of root colonization by the mycorrhizal fungus were significantly reduced by long-term shading. Our results indicate that even short periods of shade could have important consequences for the functioning of mycorrhizal symbiosis in terms of phosphorus transfer between the fungus and the plants, without any apparent changes in root colonization parameters or mycorrhizal growth response, and call for more focused research on temporal dynamics of mycorrhizal functioning under changing environmental conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...