Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 9(2): 973-984, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598180

RESUMEN

This study was performed to investigate the distribution of phenolic compounds in the peanut skins of various cultivars, as well as their antioxidant and anti-inflammatory effect (Arachishypogaea L. cv. K-Ol, cv. Sinpalkwang, cv. Daan, cv. Heuksaeng) and extraction solvent. The major components of red peanut cultivars (K-Ol, Sinpalkwang, and Daan) were identified as proanthocyanidin, catechin, gallic acid, coumaric acid, and hesperidine, whereas the major components of black peanut cultivar (Heuksaeng) were identified as anthocyanin, ferulic acid, and quercetin. The DPPH and ABTS radical scavenging activities, and FRAP values were the highest in Daan followed by Sinpalkwng, K-Ol, and Heuksang. Furthermore, the skin extracts of red peanuts effectively improved cell viability, reactive oxygen species generation, MDA concentration, and antioxidant enzyme activity (GR, GPx, CAT, and superoxide dismutase) in oxidative stress-induced HepG2 cells, and reduced the expression of pro-inflammatory factors (NO, TNF-α, IL-6, and IL-1ß) in LPS-stimulated RAW 264.7 macrophages. These results suggest that red peanut skin extracts could effectively mediate physiological activity and provide valuable information for the use of peanut byproducts as functional food materials.

2.
Front Plant Sci ; 8: 520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28443113

RESUMEN

For genetic identification of soybean [Glycine max (L.) Merrill] cultivars, insertions/deletions (InDel) markers have been preferred currently because they are easy to use, co-dominant and relatively abundant. Despite their biological importance, the investigation of InDels with proven quality and reproducibility has been limited. In this study, we described soybean barcode system approach based on InDel makers, each of which is specific to a dense variation block (dVB) with non-random recombination due to many variations. Firstly, 2,274 VBs were mined by analyzing whole genome data in six soybean cultivars (Backun, Sinpaldal 2, Shingi, Daepoong, Hwangkeum, and Williams 82) for transferability to dVB-specific InDel markers. Secondly, 73,327 putative InDels in the dVB regions were identified for the development of soybean barcode system. Among them, 202 dVB-specific InDels from all soybean cultivars were selected by gel electrophoresis, which were converted as 2D barcode types according to comparing amplicon polymorphisms in the five cultivars to the reference cultivar. Finally, the polymorphism of the markers were assessed in 147 soybean cultivars, and the soybean barcode system that allows a clear distinction among soybean cultivars is also detailed. In addition, the changing of the dVBs in a chromosomal level can be quickly identified due to investigation of the reshuffling pattern of the soybean cultivars with 27 maker sets. Especially, a backcross-inbred offspring, "Singang" and a recurrent parent, "Sowon" were identified by using the 27 InDel markers. These results indicate that the soybean barcode system enables not only the minimal use of molecular markers but also comparing the data from different sources due to no need of exploiting allele binning in new varieties.

3.
Bioprocess Biosyst Eng ; 36(6): 695-703, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23546735

RESUMEN

Miscanthus is referred to as an ideal lignocellulosic bioenergy crop, which can be used to generate heat, power, and fuel, as well as to reduce carbon dioxide emissions. The new Miscanthus sacchariflorus genotype named Geodae-Uksae 1 was recently collected from damp land in southern Korea. This study investigated the growth characteristics of Miscanthus genotypes, and developed a specific, sensitive, and reproducible sequence characterized amplified region (SCAR) marker to distinguish new M. sacchariflorus genotype Geodae-Uksae 1 from other native Miscanthus species in Korea. Growth characteristics such as stem length, stem diameter, and dry weight of Geodae-Uksae 1 were greater than those of normal M. sacchariflorus. The genotypes within Geodae-Uksae 1 were had the highest genetic similarity. A putative 1,800-bp polymorphic sequence specific to Geodae-Uksae 1 was identified with the random amplified polymorphic DNA (RAPD) N8018 primer. The sequence-characterized amplified region (SCAR) primers Geodae 1-F and Geodae 1-R were designed based on the unique RAPD amplicon. The SCAR primers produced a specific 1,799-bp amplicon in authentic Geodae-Uksae 1, whereas no amplification was observed in other Miscanthus species. The SCAR marker could contribute to identify Geodae-Uksae 1 among native Miscanthus species. The new Miscanthus genotype Geodae-Uksae 1 has great potential as an alternative lignocellulosic biomass feedstock for bioenergy productions.


Asunto(s)
Biocombustibles , Genotipo , Tallos de la Planta/genética , Poaceae/genética , Marcadores Genéticos , Lignina/genética , Lignina/metabolismo , Tamaño de los Órganos/genética , Tallos de la Planta/crecimiento & desarrollo , Poaceae/clasificación , Poaceae/crecimiento & desarrollo , Técnica del ADN Polimorfo Amplificado Aleatorio
4.
Bioprocess Biosyst Eng ; 35(1-2): 55-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22124780

RESUMEN

The sequence-characterized amplified region (SCAR) marker for simultaneous identification of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus was developed. In this study, it was attempted for the first time to develop the SCAR marker for detecting the molecular phenotypes among Miscanthus species. Randomly amplified polymorphic DNA technique was applied for this study and one fragment which is unique to M. sacchariflorus was identified and then sequenced. Based on the specific fragment, one SCAR primer pair designated as MS62-5F and MS62-5R was designed to amplify an approximately 1,000 bp DNA fragment within the sequenced region. Diagnostic PCR was performed using the primer pair. Using this SCAR marker, approximately 1,000 bp and 1,200 bp DNA fragments were obtained in M. sacchariflorus and M. sinensis, respectively. Moreover, M. x giganteus was obtained both bands at the same time. The result showed that this SCAR marker can clearly distinguish the M. sacchariflorus, M. sinensis, and M. x giganteus, respectively.


Asunto(s)
ADN de Plantas/genética , Marcadores Genéticos/genética , Poaceae/clasificación , Poaceae/genética , Reacción en Cadena de la Polimerasa/métodos , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , ADN de Plantas/análisis , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...