Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gait Posture ; 112: 128-133, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772124

RESUMEN

BACKGROUND: In the process of transtibial prosthetic fitting, alignment is the process of positioning the prosthetic foot relative to the residual limb. Changes in frontal plane alignment can impact knee moments during walking, which can either cause or, when aligned properly, prevent injuries. However, clinical evaluation of dynamic knee moments is challenging, limiting prosthetists' insights into dynamic joint loading. Typically, knee joint loading is assessed in static stance using the knee moment arm as a proxy for subsequent dynamic alignment. It remains uncertain if static alignment accurately represents actual dynamics during walking. RESEARCH QUESTION: Is the frontal knee moment arm in stance predictive for the knee moment arm and external knee adduction moment during gait in transtibial bone-anchored prosthesis users? METHODS: In this cross-sectional study, twenty-seven unilateral transtibial bone-anchored prosthesis users underwent data acquisition on the M-Gait instrumented treadmill. Static and dynamic measurements were conducted, and knee moment arm and external knee adduction moment were calculated. Pearson's correlation and linear regression analyses were performed to examine relationships between static and dynamic knee moment arms and external knee adduction moments. RESULTS: The static knee moment arm showed significant associations with dynamic knee moment arm at the ground reaction force peaks (First: r=0.60, r2=35%, p<0.001; Second: r=0.62, r2=38%, p=0.001) and knee adduction moment (First: r=0.42, r2=17%, p=0.030; Second: r=0.59, r2=35%, p=0.001). A 1 mm between-subject difference in static knee moment arm corresponded, on average, with a 0.9% difference in knee adduction moment at the first peak and a 1.5% difference at the second peak of the ground reaction force. SIGNIFICANCE: While static alignment is important to optimize adduction moments during stance it may only partly mitigate excessive moments during gait. The fair correlation and limited percentage of explained variance underscores the importance of dynamic alignment in optimizing the body's dynamic load during walking.


Asunto(s)
Miembros Artificiales , Marcha , Articulación de la Rodilla , Tibia , Humanos , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Fenómenos Biomecánicos , Articulación de la Rodilla/fisiología , Tibia/fisiología , Marcha/fisiología , Adulto , Anciano , Amputados , Caminata/fisiología , Ajuste de Prótesis
2.
J Neuroeng Rehabil ; 21(1): 35, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454427

RESUMEN

BACKGROUND: Persons with a transfemoral amputation (TFA) often experience difficulties in daily-life ambulation, including an asymmetrical and less stable gait pattern and a greater cognitive demand of walking. However, it remains unclear whether this is effected by the prosthetic suspension, as eliminating the non-rigid prosthetic connection may influence stability and cortical activity during walking. Spatiotemporal and stability-related gait parameters, as well as cortical activity during walking, were evaluated between highly active individuals (MFC-level K3-4) with a TFA and able-bodied (AB) persons, and between persons with a bone-anchored prosthesis (BAP) and those with a socket-suspended prosthesis (SSP). METHODS: 18 AB persons and 20 persons with a unilateral TFA (10 BAP-users, 10 SSP-users) walked on a treadmill at their preferred speed. Spatiotemporal and margin of stability parameters were extracted from three-dimensional movement recordings. In addition, 126-channel electroencephalogram (EEG) was recorded. Brain-related activity from several cortical areas was isolated using independent component analysis. Source-level data were divided into gait cycles and subjected to time-frequency analysis to determine gait-cycle dependent modulations of cortical activity. RESULTS: Persons with TFA walked with smaller and wider steps and with greater variability in mediolateral foot placement than AB subjects; no significant differences were found between BAP- and SSP-users. The EEG analysis yielded four cortical clusters in frontal, central (both hemispheres), and parietal areas. No statistically significant between-group differences were found in the mean power over the entire gait cycle. The event-related spectral perturbation maps revealed differences in power modulations (theta, alpha, and beta bands) between TFA and AB groups, and between BAP- and SSP-users, with largest differences observed around heel strike of either leg. CONCLUSIONS: The anticipated differences in gait parameters in persons with TFA were confirmed, however no significant effect of the fixed suspension of a BAP was found. The preliminary EEG findings may indicate more active monitoring and control of stability in persons with TFA, which appeared to be timed differently in SSP than in BAP-users. Future studies may focus on walking tasks that challenge stability to further investigate differences related to prosthetic suspension.


Asunto(s)
Amputados , Miembros Artificiales , Prótesis Anclada al Hueso , Humanos , Marcha , Amputación Quirúrgica , Caminata , Fenómenos Biomecánicos , Diseño de Prótesis
3.
PLoS One ; 18(9): e0288864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37768981

RESUMEN

This study presents a generic OpenSim musculoskeletal model of people with an osseointegrated unilateral transfemoral amputation wearing a generic prosthesis. The model, which consists of seventy-six musculotendon units and two ideal actuators at the knee and ankle joints of the prosthesis, is tested by designing an optimal control strategy that guarantees the tracking of experimental amputee data during level-ground walking while finding the actuators' torques and minimizing the muscle forces. The model can be made subject-specific and, as such, is able to reproduce the kinematics and dynamics of both healthy and amputee subjects. The model provides a tool to analyze the biomechanics of level-ground walking and to understand the contribution of the muscles and of the prosthesis' actuators. The proposed OpenSim musculoskeletal model is released as support material to this study.

4.
Gait Posture ; 103: 12-18, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37075553

RESUMEN

BACKGROUND: A transfemoral bone-anchored prosthesis (BAP) is an alternative for the conventional socket-suspended prosthesis (SSP) in persons suffering from socket-related problems. In these persons, it has been demonstrated to reduce oxygen consumption during walking, which could be related to centre of mass (CoM) and trunk dynamics. However, it remains uncertain whether the same comparative findings are found in SSP-users without any socket-related problems. RESEARCH QUESTION: Do oxygen consumption, CoM and trunk dynamics during walking differ between satisfied transfemoral SSP- and BAP-users and able-bodied individuals (AB); and are CoM and trunk dynamics and pistoning potential determinants of oxygen consumption? METHODS: Oxygen consumption was measured while participants walked on a treadmill at preferred speed, 30 % slower, and 30 % faster. At preferred speed, we also evaluated CoM deviation, root-mean-square values (RMS) of mediolateral (ML) CoM and trunk excursions, and pistoning. In the prosthetic users, we evaluated whether oxygen consumption, CoM and trunk dynamics, and pistoning were associated. RESULTS: We included BAP-users (n = 10), SSP-users (n = 10), and AB (n = 10). SSP-users demonstrated higher oxygen consumption, CoM and trunk RMS ML in comparison to AB during walking. BAP-users showed intermediate results between SSP-users and AB, yet not significantly different from either group. Greater CoM and trunk excursions were associated with higher oxygen consumption; in the SSP-users a greater degree of pistoning, in turn, was found to associate with larger trunk RMS ML. SIGNIFICANCE: Our results indicate that satisfied SSP-users have increased oxygen consumption compared to AB subjects and use compensatory movements during walking. An assessment of CoM and trunk dynamics, and pistoning during walking may be considered for evaluating whether an individual SSP-user could possibly benefit from a BAP, in addition to the currently used functional tests for evaluating eligibility. This might lead to a larger group of persons with a transfemoral SSP benefiting from this technology.


Asunto(s)
Amputados , Miembros Artificiales , Prótesis Anclada al Hueso , Humanos , Estudios Transversales , Marcha , Caminata , Consumo de Oxígeno , Diseño de Prótesis
5.
J Neuroeng Rehabil ; 20(1): 1, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635703

RESUMEN

BACKGROUND: When developing new lower limb prostheses, prototypes are tested to obtain insights into the performance. However, large variations between research protocols may complicate establishing the potential added value of newly developed prototypes over other prostheses. OBJECTIVE: This review aims at identifying participant characteristics, research protocols, reference values, aims, and corresponding outcome measures used during prosthesis prototype testing on people with a transfemoral amputation. METHODS: A systematic search was done on PubMed and Scopus from 2000 to December 2020. Articles were included if testing was done on adults with transfemoral or knee disarticulation amputation; testing involved walking with a non-commercially available prototype leg prosthesis consisting of at least a knee component; and included evaluations of the participants' functioning with the prosthesis prototype. RESULTS: From the initial search of 2027 articles, 48 articles were included in this review. 20 studies were single-subject studies and 4 studies included a cohort of 10 or more persons with a transfemoral amputation. Only 5 articles reported all the pre-defined participant characteristics that were deemed relevant. The familiarization time with the prosthesis prototype prior to testing ranged from 5 to 10 min to 3 months; in 25% of the articles did not mention the extent of the familiarization period. Mobility was most often mentioned as the development or testing aim. A total of 270 outcome measures were identified, kinetic/kinematic gait parameters were most often reported. The majority of outcome measures corresponded to the mobility aim. For 48% of the stated development aims and 4% of the testing aims, no corresponding outcome measure could be assigned. Results indicated large inconsistencies in research protocols and outcome measures used to validate pre-determined aims. CONCLUSIONS: The large variation in prosthesis prototype testing and reporting calls for the development of a core set of reported participant characteristics, testing protocols, and specific and well-founded outcome measures, tailored to the various aims and development phases. The use of such a core set can give greater insights into progress of developments and determine which developments have additional benefits over the state-of-the-art. This review may contribute as initial input towards the development of such a core set.


Asunto(s)
Amputados , Miembros Artificiales , Adulto , Humanos , Amputación Quirúrgica , Marcha , Caminata , Rodilla
6.
J Neuroeng Rehabil ; 17(1): 134, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032621

RESUMEN

BACKGROUND: After transfemoral amputation, many hours of practice are needed to re-learn walking with a prosthesis. The long adaptation process that consolidates a novel gait pattern seems to depend on cerebellar function for reinforcement of specific gait modifications, but the precise, step-by-step gait modifications (e.g., foot placement) most likely rely on top-down commands from the brainstem and cerebral cortex. The aim of this study was to identify, in able-bodied individuals, the specific modulations of cortical rhythms that accompany short-term gait modifications during first-time use of a dummy prosthesis. METHODS: Fourteen naïve participants walked on a treadmill without (one block, 4 min) and with a dummy prosthesis (three blocks, 3 × 4 min), while ground reaction forces and 32-channel EEG were recorded. Gait cycle duration, stance phase duration, step width, maximal ground reaction force and, ground reaction force trace over time were measured to identify gait modifications. Independent component analysis of EEG data isolated brain-related activity from distinct anatomical sources. The source-level data were segmented into gait cycles and analyzed in the time-frequency domain to reveal relative enhancement or suppression of intrinsic cortical oscillations. Differences between walking conditions were evaluated with one-way ANOVA and post-hoc testing (α = 0.05). RESULTS: Immediate modifications occurred in the gait parameters when participants were introduced to the dummy prosthesis. Except for gait cycle duration, these modifications remained throughout the duration of the experimental session. Power modulations of the theta, mu, beta, and gamma rhythms, of sources presumably from the fronto-central and the parietal cortices, were found across the experimental session. Significant power modulations of the theta, beta, and gamma rhythms within the gait cycle were predominately found around the heel strike of both feet and the swing phase of the right (prosthetic) leg. CONCLUSIONS: The modulations of cortical activity could be related to whole-body coordination, including the swing phase and placing of the prosthesis, and the bodyweight transfer between legs and arms. Reduced power modulation of the gamma rhythm within the experimental session may indicate initial motor memories being formed. Better understanding of the sensorimotor processes behind gait modifications may inform the development of neurofeedback strategies to assist gait rehabilitation.


Asunto(s)
Amputación Quirúrgica/rehabilitación , Miembros Artificiales , Corteza Cerebral/fisiología , Marcha/fisiología , Desempeño Psicomotor/fisiología , Adaptación Fisiológica/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Voluntarios Sanos , Humanos , Masculino , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA