Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Arch Toxicol ; 98(5): 1437-1455, 2024 May.
Article En | MEDLINE | ID: mdl-38443724

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) such as gefitinib and osimertinib have primarily been used as first-line treatments for patients with EGFR-activating mutations in non-small cell lung cancer (NSCLC). Novel biomarkers are required to distinguish patients with lung cancer who are resistant to EGFR-TKIs. The aim of the study is to investigate the expression and functional role of YES1, one of the Src-family kinases, in EGFR-TKI-resistant NSCLC. YES1 expression was elevated in gefitinib-resistant HCC827 (HCC827/GR) cells, harboring EGFR mutations. Moreover, HCC827/GR cells exhibited increased reactive oxygen species (ROS) levels compared to those of the parent cells, resulting in the phosphorylation/activation of YES1 due to oxidation of the cysteine residue. HCC827/GR cells showed elevated expression levels of YES1-associated protein 1 (YAP1), NF-E2-related factor 2 (Nrf2), cancer stemness-related markers, and antioxidant proteins compared to those of the parent cells. Knockdown of YES1 in HCC827/GR cells suppressed YAP1 phosphorylation, leading to the inhibition of Bcl-2, Bcl-xL, and Cyclin D1 expression. Silencing YES1 markedly attenuated the proliferation, migration, and tumorigenicity of HCC827/GR cells. Dasatinib inhibited the proliferation of HCC827/GR cells by targeting YES1-mediated signaling pathways. Furthermore, the combination of gefitinib and dasatinib demonstrated a synergistic effect in suppressing the proliferation of HCC827/GR cells. Notably, YES1- and Nrf2-regulated genes showed a positive regulatory relationship in patients with lung cancer and in TKI-resistant NSCLC cell lines. Taken together, these findings suggest that modulation of YES1 expression and activity may be an attractive therapeutic strategy for the treatment of drug-resistant NSCLC.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Gefitinib/pharmacology , Gefitinib/therapeutic use , Dasatinib/pharmacology , Dasatinib/therapeutic use , NF-E2-Related Factor 2/genetics , Cell Proliferation , Quinazolines/pharmacology , Quinazolines/therapeutic use , Drug Resistance, Neoplasm , ErbB Receptors , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Proto-Oncogene Proteins c-yes/genetics
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article En | MEDLINE | ID: mdl-38338729

Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.


Neoplasms , src-Family Kinases , Humans , Proto-Oncogene Proteins c-yes , Cell Line, Tumor , src-Family Kinases/metabolism , Signal Transduction , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/genetics
...