Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 13804, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35963936

RESUMEN

Resistive switching (RS) of Transition Metal Oxides (TMOs) has become not only an attractive choice for the development of next generation non-volatile memory, but also as a suitable family of materials capable of supporting high-frequency and high-speed switching needed for the next generation wireless communication technologies, such as 6G. The exact mechanism of RS is not yet clearly understood; however, it is widely accepted to be related to the formation and rupture of sub-stoichiometric conductive filaments (Magnéli phases) of the respective oxides upon activation. Here, we examine the switching behaviour of amorphous TiO2 and NiO both under the DC regime and in the high frequency mode. We show that the DC resistance of amorphous TiO2 is invariant of the length of the active region. In contrast, the resistance of the NiO samples exhibits a strong dependence on the length, and its DC resistance reduces as the length is increased. We further show that the high frequency switching characteristics of TiO2, reflected in insertion losses in the ON state and isolation in the OFF state, are far superior to those of NiO. Fundamental inferences stem from these findings, which not only enrich our understanding of the mechanism of conduction in binary/multinary oxides but are essential for the enablement of widespread use of binary/multinary oxides in emerging non-volatile memory and 6G mm-wave applications. As an example of a possible application supported by TMOs, is a Reflective-Type Variable Attenuator (RTVA), shown here. It is designed to operate at a centre frequency of 15 GHz. The results indicate that it has a dynamic range of no less than 18 dB with a maximum insertion loss of 2.1 dB.

2.
Opt Lett ; 45(16): 4484-4487, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32797006

RESUMEN

We report multi-level modulation in polarization-independent surface-normal electro-absorption modulators (SNEAMs). Four-level pulse amplitude modulation (PAM-4) at a line rate of 44 Gb/s is demonstrated on a fully packaged SNEAM with a 30 µm active area diameter and a 14 GHz electro-optic bandwidth. High-capacity PAM-4 transmission at 112 and 160 Gb/s is demonstrated on an unpackaged SNEAM chip, with a 15 µm active area diameter and ultrawide electro-optic bandwidth (≫65GHz). Fiber transmission is investigated for direct detection link lengths up to 23 km at 44 Gb/s and 2 km at 112 and 160 Gb/s, the highest multi-level modulation rates achieved on a SNEAM.

3.
Opt Express ; 22(22): 26854-61, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25401832

RESUMEN

Integrated semiconductor lasers on silicon are one of the most crucial devices to enable low-cost silicon photonic integrated circuits for high-bandwidth optic communications and interconnects. While optical amplifiers and lasers are typically realized in III-V waveguide structures, it is beneficial to have an integration approach which allows flexible and efficient coupling of light between III-V gain media and silicon waveguides. In this paper, we propose and demonstrate a novel fabrication technique and associated transition structure to realize integrated lasers without the constraints of other critical processing parameters such as the starting silicon layer thicknesses. This technique employs epitaxial growth of silicon in a pre-defined trench with taper structures. We fabricate and demonstrate a long-cavity hybrid laser with a narrow linewidth of 130 kHz and an output power of 1.5 mW using the proposed technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA