Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lancet Digit Health ; 6(7): e470-e479, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38906612

RESUMEN

BACKGROUND: Broad-capture proteomic technologies have the potential to improve disease prediction, enabling targeted prevention and management, but studies have so far been limited to very few selected diseases and have not evaluated predictive performance across multiple conditions. We aimed to evaluate the potential of serum proteins to improve risk prediction over and above health-derived information and polygenic risk scores across a diverse set of 24 outcomes. METHODS: We designed multiple case-cohorts nested in the EPIC-Norfolk prospective study, from participants with available serum samples and genome-wide genotype data, with more than 32 974 person-years of follow-up. Participants were middle-aged individuals (aged 40-79 years at baseline) of European ancestry who were recruited from the general population of Norfolk, England, between March, 1993 and December, 1997. We selected participants who developed one of ten less common diseases within 10 years of follow-up; we also subsampled a randomly drawn control subcohort, which also served to investigate 14 more common outcomes (n>70), including all-cause premature mortality (death before the age of 75 years; case numbers 71-437; controls 608-1556). Individuals were excluded from the current study owing to failed genotyping or proteomic quality control, relatedness, or missing information on age, sex, BMI, or smoking status. We used a machine learning framework to derive sparse predictive protein models for the onset of the the 23 individual diseases and all-cause premature mortality, and to derive a single common sparse multimorbidity signature that was predictive across multiple diseases from 2923 serum proteins. FINDINGS: Participants who developed one of ten less common diseases within 10 years of follow-up included 482 women and 507 men, with a mean age at baseline of 64·56 years (8·08). The random subcohort included 990 women and 769 men, with a mean age of 58·79 years (9·31). As few as five proteins alone outperformed polygenic risk scores for 17 of 23 outcomes (median dfference in concordance index [C-index] 0·13 [0·10-0·17]) and improved predictive performance when added over basic patient-derived information models for seven outcomes, achieving a median C-index of 0·82 (IQR 0·77-0·82). This included diseases with poor prognosis such as lung cancer (C-index 0·85 [+/- cross-validation error 0·83-0·87]), for which we identified unreported biomarkers such as C-X-C motif chemokine ligand 17. A sparse multimorbidity signature of ten proteins improved prediction across seven outcomes over patient-derived information models, achieving performances (median C-index 0·81 [IQR 0·80-0·82]) similar to those of disease-specific signatures. INTERPRETATION: We show the value of broad-capture proteomic biomarker discovery studies across multiple diseases of diverse causes, pointing to those that might benefit the most from proteomic approaches, and the potential to derive common sparse biomarker panels for prediction of multiple diseases at once. This framework could enable follow-up studies to explore the generalisability of proteomic models and to benchmark these against clinical assays, which are required to understand the translational potential of these findings. FUNDING: Medical Research Council, Health Data Research UK, UK Research and Innovation-National Institute for Health and Care Research, Cancer Research UK, and Wellcome Trust.


Asunto(s)
Biomarcadores , Aprendizaje Automático , Proteómica , Humanos , Persona de Mediana Edad , Masculino , Femenino , Estudios Prospectivos , Biomarcadores/sangre , Proteómica/métodos , Anciano , Adulto , Inglaterra , Medición de Riesgo/métodos , Factores de Riesgo
2.
EBioMedicine ; 105: 105168, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878676

RESUMEN

BACKGROUND: Understanding the role of circulating proteins in prostate cancer risk can reveal key biological pathways and identify novel targets for cancer prevention. METHODS: We investigated the association of 2002 genetically predicted circulating protein levels with risk of prostate cancer overall, and of aggressive and early onset disease, using cis-pQTL Mendelian randomisation (MR) and colocalisation. Findings for proteins with support from both MR, after correction for multiple-testing, and colocalisation were replicated using two independent cancer GWAS, one of European and one of African ancestry. Proteins with evidence of prostate-specific tissue expression were additionally investigated using spatial transcriptomic data in prostate tumour tissue to assess their role in tumour aggressiveness. Finally, we mapped risk proteins to drug and ongoing clinical trials targets. FINDINGS: We identified 20 proteins genetically linked to prostate cancer risk (14 for overall [8 specific], 7 for aggressive [3 specific], and 8 for early onset disease [2 specific]), of which the majority replicated where data were available. Among these were proteins associated with aggressive disease, such as PPA2 [Odds Ratio (OR) per 1 SD increment = 2.13, 95% CI: 1.54-2.93], PYY [OR = 1.87, 95% CI: 1.43-2.44] and PRSS3 [OR = 0.80, 95% CI: 0.73-0.89], and those associated with early onset disease, including EHPB1 [OR = 2.89, 95% CI: 1.99-4.21], POGLUT3 [OR = 0.76, 95% CI: 0.67-0.86] and TPM3 [OR = 0.47, 95% CI: 0.34-0.64]. We confirmed an inverse association of MSMB with prostate cancer overall [OR = 0.81, 95% CI: 0.80-0.82], and also found an inverse association with both aggressive [OR = 0.84, 95% CI: 0.82-0.86] and early onset disease [OR = 0.71, 95% CI: 0.68-0.74]. Using spatial transcriptomics data, we identified MSMB as the genome-wide top-most predictive gene to distinguish benign regions from high grade cancer regions that comparatively had five-fold lower MSMB expression. Additionally, ten proteins that were associated with prostate cancer risk also mapped to existing therapeutic interventions. INTERPRETATION: Our findings emphasise the importance of proteomics for improving our understanding of prostate cancer aetiology and of opportunities for novel therapeutic interventions. Additionally, we demonstrate the added benefit of in-depth functional analyses to triangulate the role of risk proteins in the clinical aggressiveness of prostate tumours. Using these integrated methods, we identify a subset of risk proteins associated with aggressive and early onset disease as priorities for investigation for the future prevention and treatment of prostate cancer. FUNDING: This work was supported by Cancer Research UK (grant no. C8221/A29017).


Asunto(s)
Análisis de la Aleatorización Mendeliana , Neoplasias de la Próstata , Proteómica , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Factores de Riesgo , Proteómica/métodos , Estudio de Asociación del Genoma Completo , Biomarcadores de Tumor/genética , Transcriptoma , Predisposición Genética a la Enfermedad , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Oportunidad Relativa , Proteoma , Edad de Inicio
3.
Nat Commun ; 15(1): 3621, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684708

RESUMEN

Circulating proteins can reveal key pathways to cancer and identify therapeutic targets for cancer prevention. We investigate 2,074 circulating proteins and risk of nine common cancers (bladder, breast, endometrium, head and neck, lung, ovary, pancreas, kidney, and malignant non-melanoma) using cis protein Mendelian randomisation and colocalization. We conduct additional analyses to identify adverse side-effects of altering risk proteins and map cancer risk proteins to drug targets. Here we find 40 proteins associated with common cancers, such as PLAUR and risk of breast cancer [odds ratio per standard deviation increment: 2.27, 1.88-2.74], and with high-mortality cancers, such as CTRB1 and pancreatic cancer [0.79, 0.73-0.85]. We also identify potential adverse effects of protein-altering interventions to reduce cancer risk, such as hypertension. Additionally, we report 18 proteins associated with cancer risk that map to existing drugs and 15 that are not currently under clinical investigation. In sum, we identify protein-cancer links that improve our understanding of cancer aetiology. We also demonstrate that the wider consequence of any protein-altering intervention on well-being and morbidity is required to interpret any utility of proteins as potential future targets for therapeutic prevention.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Femenino , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/sangre , Masculino , Proteínas Sanguíneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA