Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
BMC Cancer ; 18(1): 796, 2018 Aug 06.
Article En | MEDLINE | ID: mdl-30081852

BACKGROUND: ADAMs (a disintegrin and metalloproteinase) have long been associated with tumor progression. Recent findings indicate that members of the closely related ADAMTS (ADAMs with thrombospondin motifs) family are also critically involved in carcinogenesis. Gene silencing through DNA methylation at CpG loci around e.g. transcription start or enhancer sites is a major mechanism in cancer development. Here, we aimed at identifying genes of the ADAM and ADAMTS family showing altered DNA methylation in the development or colorectal cancer (CRC) and other epithelial tumors. METHODS: We investigated potential changes of DNA methylation affecting ADAM and ADAMTS genes in 117 CRC, 40 lung cancer (LC) and 15 oral squamous-cell carcinoma (SCC) samples. Tumor tissue was analyzed in comparison to adjacent non-malignant tissue of the same patients. The methylation status of 1145 CpGs in 51 ADAM and ADAMTS genes was measured with the HumanMethylation450 BeadChip Array. ADAMTS16 protein expression was analyzed in CRC samples by immunohistochemistry. RESULTS: In CRC, we identified 72 CpGs in 18 genes which were significantly affected by hyper- or hypomethylation in the tumor tissue compared to the adjacent non-malignant tissue. While notable/frequent alterations in methylation patterns within ADAM genes were not observed, conspicuous changes were found in ADAMTS16 and ADAMTS2. To figure out whether these differences would be CRC specific, additional LC and SCC tissue samples were analyzed. Overall, 78 differentially methylated CpGs were found in LC and 29 in SCC. Strikingly, 8 CpGs located in the ADAMTS16 gene were commonly differentially methylated in all three cancer entities. Six CpGs in the promoter region were hypermethylated, whereas 2 CpGs in the gene body were hypomethylated indicative of gene silencing. In line with these findings, ADAMTS16 protein was strongly expressed in globlet cells and colonocytes in control tissue but not in CRC samples. Functional in vitro studies using the colorectal carcinoma cell line HT29 revealed that ADAMTS16 expression restrained tumor cell proliferation. CONCLUSIONS: We identified ADAMTS16 as novel gene with cancer-specific promoter hypermethylation in CRC, LC and SCC patients implicating ADAMTS16 as potential biomarker for these tumors. Moreover, our results provide evidence that ADAMTS16 may have tumor suppressor properties.


ADAMTS Proteins/genetics , Biomarkers, Tumor/genetics , Colorectal Neoplasms/genetics , DNA Methylation , Lung Neoplasms/genetics , Mouth Neoplasms/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , ADAMTS Proteins/metabolism , Biomarkers, Tumor/metabolism , Cell Proliferation , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , CpG Islands , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , HT29 Cells , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Mouth Neoplasms/enzymology , Mouth Neoplasms/pathology , Promoter Regions, Genetic , Squamous Cell Carcinoma of Head and Neck/enzymology , Squamous Cell Carcinoma of Head and Neck/pathology
2.
Oncotarget ; 8(42): 72584-72596, 2017 Sep 22.
Article En | MEDLINE | ID: mdl-29069811

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases. The latter are also characterized by elevated plasma and tissue levels of extracellular sphingomyelinase (SMase). Whether the SMase affects ADAM activity and thus endothelial cell function has not been addressed to date. Here, we analyzed the effect of SMase on ADAM17-mediated shedding in COS7 cells and in human umbilical vein endothelial cells (HUVECs). Exposure to SMase significantly increased ADAM17-mediated release of alkaline-phosphatase (AP)-tagged TGF-α in COS7 cells and shedding of endogenously expressed TNFR1 in HUVECs. We previously presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase function. We found that SMase treatment led to PS externalization in both cell types. Transient non-apoptotic PS exposure is often mediated by Ca2+-dependent phospholipid scramblases. Accordingly, the Ca2+-chelator EGTA markedly reduced the breakdown of phospholipid asymmetry and shedding of TGF-α and TNFR1. Moreover, sheddase activity was significantly diminished in the presence of the competing PS-headgroup OPLS. SMase-stimulated TNFR1 shedding strikingly diminished TNF-α-induced signalling cascades and endothelial cell death. Taken together, our data suggest that SMase activity might act as protective factor for endothelial cells in cardiovascular diseases.

3.
Nat Commun ; 7: 11523, 2016 05 10.
Article En | MEDLINE | ID: mdl-27161080

ADAM17, a prominent member of the 'Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca(2+) elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function.


ADAM17 Protein/metabolism , Phosphatidylserines/metabolism , ADAM17 Protein/chemistry , ADAM17 Protein/deficiency , ADAM17 Protein/genetics , Amino Acid Sequence , Animals , Apoptosis/physiology , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/genetics , Cell Line , Enzyme Activation , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Melitten/pharmacology , Mice , Mice, Knockout , Models, Biological , Protein Domains , Substrate Specificity
4.
Biochemistry ; 54(38): 5791-801, 2015 Sep 29.
Article En | MEDLINE | ID: mdl-26348730

A wide variety of biological processes including differentiation, regeneration, and cancer progression are regulated by shedding of membrane-anchored proteins. One of the major sheddases is A Disintegrin And Metalloprotease-17 (ADAM17) whose extracellular region consists of a pro-, a catalytic, a disintegrin-, and a membrane-proximal domain (MPD) as well as a short juxtamembrane segment of 17 amino acid residues that has been named "Conserved ADAM-seventeeN Dynamic Interaction Sequence" (CANDIS). This segment is involved in substrate recognition. Key mediators of inflammation including interleukin-6 receptor (IL-6R) and tumor necrosis factor (TNF-α) are substrates of ADAM17. The shedding activity of ADAM17 is regulated by the conformation of the membrane-proximal domain preceding the CANDIS segment. Here, we show that CANDIS, besides being involved in substrate recognition, is able to interact with lipid bilayers in vitro and that this property could be involved in regulating ADAM17 shedding activity.


ADAM Proteins/metabolism , Cell Membrane/metabolism , Lipid Bilayers/metabolism , ADAM Proteins/analysis , ADAM Proteins/genetics , ADAM17 Protein , Amino Acid Sequence , Animals , Cell Line , Hep G2 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Mice , Molecular Sequence Data , Mutation , Protein Interaction Domains and Motifs , Substrate Specificity
...