Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Neurotrauma ; 40(19-20): 2037-2049, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37051703

RESUMEN

Repetitive mild traumatic brain injuries (rmTBIs) are serious trauma events responsible for the development of numerous neurodegenerative disorders. A major challenge in developing diagnostics and treatments for the consequences of rmTBI is the fundamental knowledge gaps of the molecular mechanisms responsible for neurodegeneration. It is both critical and urgent to understand the neuropathological and functional consequences of rmTBI to develop effective therapeutic strategies. Using the Closed-Head Impact Model of Engineered Rotational Acceleration, or CHIMERA, we measured neural changes following injury, including brain volume, diffusion tensor imaging, and resting-state functional magnetic resonance imaging coupled with graph theory and functional connectivity analyses. We determined the effect of rmTBI on markers of gliosis and used NanoString-GeoMx to add a digital-spatial protein profiling analysis of neurodegenerative disease-associated proteins in gray and white matter regions. Our analyses revealed aberrant connectivity changes in the thalamus, independent of microstructural damage or neuroinflammation. We also identified distinct changes in the levels of proteins linked to various neurodegenerative processes including total and phospho-tau species and cell proliferation markers. Together, our data show that rmTBI significantly alters brain functional connectivity and causes distinct protein changes in morphologically intact brain areas.


Asunto(s)
Conmoción Encefálica , Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Humanos , Conmoción Encefálica/complicaciones , Enfermedades Neurodegenerativas/patología , Imagen de Difusión Tensora , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Imagen por Resonancia Magnética
2.
Exp Neurol ; 343: 113766, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34029610

RESUMEN

Tauopathies, including Alzheimer's disease, are characterized by progressive accumulation of hyperphosphorylated and pathologic tau protein in association with onset of cognitive and behavioral impairment. Tau pathology is also associated with increased susceptibility to seizures and epilepsy, with tau-/- mice showing seizure resistance in some epilepsy models. To better understand how tau pathology is related to neuronal excitability, we performed whole-cell patch-clamp electrophysiology in dentate gyrus granule cells of tau-/- and human-tau expressing, htau mice. The htau mouse is unique from other transgenic tau models in that the endogenous murine tau gene has been and replaced with readily phosphorylated human tau. We assessed several measures of neuronal excitability, including evoked action potential frequency and excitatory synaptic responses in dentate granule cells from tau-/-, htau, and non-transgenic control mice at 1.5, 4, and 9 months of age. Compared to age matched controls, dentate granule cells from both tau-/- and htau mice had a lower peak frequency of evoked action potentials and greater paired pulse facilitation, suggesting reduced neuronal excitability. Our results suggest that neuronal excitability is more strongly influenced by the absence of functional tau than by the presence of pathologic tau. These results also suggest that tau's effect on neuronal excitability is more complex than previously understood.


Asunto(s)
Giro Dentado/citología , Giro Dentado/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Proteínas tau/biosíntesis , Factores de Edad , Animales , Femenino , Expresión Génica , Humanos , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Proteínas tau/genética
3.
Int J Mol Sci ; 22(3)2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530349

RESUMEN

Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer's disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Tauopatías/etiología , Tauopatías/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteoma , Proteómica/métodos , Índice de Severidad de la Enfermedad , Tauopatías/diagnóstico , Tauopatías/tratamiento farmacológico , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo , Proteínas tau/metabolismo
4.
J Med Chem ; 64(3): 1545-1557, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33428418

RESUMEN

The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90ß, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90ß-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Silenciador del Gen , Proteínas HSP90 de Choque Térmico/genética , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Modelos Moleculares , Conformación Molecular , Neoplasias/tratamiento farmacológico , Pliegue de Proteína , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Especificidad por Sustrato , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
5.
Sci Rep ; 10(1): 15021, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929120

RESUMEN

Ubiquinol-cytochrome c reductase hinge protein (UQCRH) is the hinge protein for the multi-subunit complex III of the mitochondrial electron transport chain and is involved in the electron transfer reaction between cytochrome c1 and c. Recent genome-wide transcriptomic and epigenomic profiling of clear cell renal cell carcinoma (ccRCC) by The Cancer Genome Atlas (TCGA) identified UQCRH as the top-ranked gene showing inverse correlation between DNA hypermethylation and mRNA downregulation. The function and underlying mechanism of UQCRH in the Warburg effect metabolism of ccRCC have not been characterized. Here, we verified the clinical association of low UQCRH expression and shorter survival of ccRCC patients through in silico analysis and identified KMRC2 as a highly relevant ccRCC cell line that displays hypermethylation-induced UQCRH extinction. Ectopic overexpression of UQCRH in KMRC2 restored mitochondrial membrane potential, increased oxygen consumption, and attenuated the Warburg effect at the cellular level. UQCRH overexpression in KMRC2 induced higher apoptosis and slowed down in vitro and in vivo tumor growth. UQCRH knockout by CRISPR/Cas9 had little impact on the metabolism and proliferation of 786O ccRCC cell line, suggesting the dispensable role of UQCRH in cells that have entered a Warburg-like state through other mechanisms. Together, our study suggests that loss of UQCRH expression by hypermethylation may promote kidney carcinogenesis through exacerbating the functional decline of mitochondria thus reinforcing the Warburg effect.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Complejo III de Transporte de Electrones/genética , Neoplasias Renales/metabolismo , Efecto Warburg en Oncología , Animales , Apoptosis , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Metilación de ADN , Regulación hacia Abajo , Complejo III de Transporte de Electrones/metabolismo , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Ratones
6.
Adv Exp Med Biol ; 1243: 135-146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32297216

RESUMEN

Molecular chaperones are responsible for maintaining intracellular protein quality control by facilitating the conformational maturation of new proteins as well as the refolding of denatured proteins. While there are several classes of molecular chaperones in the cell, this chapter will focus solely on the small molecule modulation of Hsp90, the 90 kDa heat shock protein. Hsp90 is not only responsible for folding nascent proteins, but it also regulates the triage of numerous client proteins through partnering with the ubiquitin-proteasome pathway. Consequently, Hsp90 plays critical role in maintaining the protein homeostasis (proteostasis) network within the cell and is required for the activation/maturation of more than 300 client protein substrates. Many of the clients that depend upon Hsp90 are overexpressed or mutated during malignant transformation. This often renders the clients thermodynamically unstable and dependent on Hsp90 for stability. This phenomenon results in an oncogenic 'addiction' to the Hsp90 protein folding machinery as Hsp90 maintains onco-client proteins. Furthermore, Hsp90-dependent substrates are associated with all ten hallmarks of cancer, making Hsp90 an attractive target for the development of cancer chemotherapeutics. In fact, 17 small molecule inhibitors of Hsp90 have been developed and clinically evaluated for the treatment of cancer. Unfortunately, most of these molecules have failed for various reasons, necessitating a new approach to modulate the Hsp90 protein folding machine.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Neoplasias/metabolismo , Pliegue de Proteína/efectos de los fármacos
7.
Int J Biol Macromol ; 127: 136-145, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30639592

RESUMEN

A microsatellite expansion mutation in C9orf72 is the most common genetic cause of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). The expansion mutation leads to C9orf72 loss of function, RNA foci formation, and generation of five species of non-AUG RAN translated dipeptide repeat proteins (DPRs), such as poly(GA), poly(GP), poly(GR), poly(PA), and poly(PR). Although one cell can contain more than type of DPRs, information about interplay between different DPR species is limited. Here we show that the combined expression of distinct C9orf72-derived dipeptide repeat species produces cellular outcomes and structural differences that are unique compared to the expression of a single DPR species, suggesting the complex biological interactions that occur when multiple DPR variants are simultaneously expressed. Our data highlights the need for further analysis of how combined expression of different DPRs affects the disease state.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Dipéptidos , Demencia Frontotemporal , Secuencias Repetitivas de Aminoácido , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Línea Celular , Dipéptidos/genética , Dipéptidos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos
8.
Nat Commun ; 9(1): 4345, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30341316

RESUMEN

Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mesencéfalo/metabolismo , Técnicas Biosensibles , Proteínas HSP90 de Choque Térmico/fisiología , Mesencéfalo/patología , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Estrés Fisiológico
9.
ACS Chem Biol ; 13(8): 2288-2299, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29893552

RESUMEN

Genetic and epigenetic alterations in FK506-binding protein 5 ( FKBP5) have been associated with increased risk for psychiatric disorders, including post-traumatic stress disorder (PTSD). Some of these common variants can increase the expression of FKBP5, the gene that encodes FKBP51. Excess FKBP51 promotes hypothalamic-pituitary-adrenal (HPA) axis dysregulation through altered glucocorticoid receptor (GR) signaling. Thus, we hypothesized that GR activity could be restored by perturbing FKBP51. Here, we screened 1280 pharmacologically active compounds and identified three compounds that rescued FKBP51-mediated suppression of GR activity without directly activating GR. One of the three compounds, benztropine mesylate, disrupted the association of FKBP51 with the GR/Hsp90 complex in vitro. Moreover, we show that removal of FKBP51 from this complex by benztropine restored GR localization in ex vivo brain slices and primary neurons from mice. In conclusion, we have identified a novel disruptor of the FKBP51/GR/Hsp90 complex. Targeting this complex may be a viable approach to developing treatments for disorders related to aberrant FKBP51 expression.


Asunto(s)
Benzotropina/farmacología , Depresión/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , Receptores de Glucocorticoides/metabolismo , Trastornos por Estrés Postraumático/tratamiento farmacológico , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Benzotropina/química , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Depresión/metabolismo , Descubrimiento de Drogas , Humanos , Ratones , Terapia Molecular Dirigida , Unión Proteica/efectos de los fármacos , Trastornos por Estrés Postraumático/metabolismo , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores
10.
ACS Chem Biol ; 13(4): 933-941, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29402077

RESUMEN

Gain-of-function mutations within the olfactomedin (OLF) domain of myocilin result in its toxic intracellular accumulation and hasten the onset of open-angle glaucoma. The absence of myocilin does not cause disease; therefore, strategies aimed at eliminating myocilin could lead to a successful glaucoma treatment. The endoplasmic reticulum Hsp90 paralog Grp94 accelerates OLF aggregation. Knockdown or pharmacological inhibition of Grp94 in cells facilitates clearance of mutant myocilin via a non-proteasomal pathway. Here, we expanded our support for targeting Grp94 over cytosolic paralogs Hsp90α and Hsp90ß. We then developed a high-throughput screening assay to identify new chemical matter capable of disrupting the Grp94/OLF interaction. When applied to a blind, focused library of 17 Hsp90 inhibitors, our miniaturized single-read in vitro thioflavin T -based kinetics aggregation assay exclusively identified compounds that target the chaperone N-terminal nucleotide binding site. In follow up studies, one compound (2) decreased the extent of co-aggregation of Grp94 with OLF in a dose-dependent manner in vitro, and enabled clearance of the aggregation-prone full-length myocilin variant I477N in cells without inducing the heat shock response or causing cytotoxicity. Comparison of the co-crystal structure of compound 2 and another non-selective hit in complex with the N-terminal domain of Grp94 reveals a docking mode tailored to Grp94 and explains its selectivity. A new lead compound has been identified, supporting a targeted chemical biology assay approach to develop a protein degradation-based therapy for myocilin-associated glaucoma by selectively inhibiting Grp94.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Glaucoma/tratamiento farmacológico , Glicoproteínas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Glicoproteínas de Membrana/antagonistas & inhibidores , Cristalografía por Rayos X , Proteínas del Citoesqueleto , Proteínas de la Matriz Extracelular/genética , Proteínas del Ojo , Glicoproteínas/genética , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular
11.
Philos Trans R Soc Lond B Biol Sci ; 373(1738)2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29203717

RESUMEN

Mood disorders affect nearly a quarter of the world's population. Therefore, understanding the molecular mechanisms underlying these conditions is of great importance. FK-506 binding protein 5 (FKBP5) encodes the FKBP51 protein, a heat shock protein 90 kDa (Hsp90) co-chaperone, and is a risk factor for several affective disorders. FKBP51, in coordination with Hsp90, regulates glucocorticoid receptor (GR) activity via a short negative feedback loop. This signalling pathway rapidly restores homeostasis in the hypothalamic-pituitary-adrenal (HPA) axis following stress. Expression of FKBP5 increases with age through reduced DNA methylation. High levels of FKBP51 are linked to GR resistance and reduced stress coping behaviour. Moreover, common allelic variants in the FKBP5 gene are associated with increased risk of developing affective disorders like anxiety, depression and post-traumatic stress disorder (PTSD). This review highlights the current understanding of the Hsp90 co-chaperone, FKBP5, in disease from both human and animal studies. In addition, FKBP5 genetic implications in the clinic involving life stress exposure, gender differences and treatment outcomes are discussed.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.


Asunto(s)
Proteínas HSP90 de Choque Térmico/genética , Trastornos Mentales/genética , Estrés Psicológico/genética , Proteínas de Unión a Tacrolimus/genética , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas de Unión a Tacrolimus/metabolismo
12.
Sci Rep ; 7(1): 17951, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263415

RESUMEN

The heat shock protein 90 (Hsp90) family of molecular chaperones regulates protein homeostasis, folding, and degradation. The ER-resident Hsp90 isoform, glucose-regulated protein 94 (Grp94), promotes the aggregation of mutant forms of myocilin, a protein associated with primary open-angle glaucoma. While inhibition of Grp94 promotes the degradation of mutant myocilin in vitro, to date no Grp94-selective inhibitors have been investigated in vivo. Here, a Grp94-selective inhibitor facilitated mutant myocilin degradation and rescued phenotypes in a transgenic mouse model of hereditary primary open-angle glaucoma. Ocular toxicities previously associated with pan-Hsp90 inhibitors were not evident with our Grp94-selective inhibitor, 4-Br-BnIm. Our study suggests that selective inhibition of a distinct Hsp90 family member holds translational promise for ocular and other diseases associated with cell stress and protein misfolding.


Asunto(s)
Glaucoma de Ángulo Abierto/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones Endogámicos C57BL , Ratones Transgénicos
13.
Proc Natl Acad Sci U S A ; 114(36): 9707-9712, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827321

RESUMEN

The microtubule-associated protein tau (MAPT, tau) forms neurotoxic aggregates that promote cognitive deficits in tauopathies, the most common of which is Alzheimer's disease (AD). The 90-kDa heat shock protein (Hsp90) chaperone system affects the accumulation of these toxic tau species, which can be modulated with Hsp90 inhibitors. However, many Hsp90 inhibitors are not blood-brain barrier-permeable, and several present associated toxicities. Here, we find that the cochaperone, activator of Hsp90 ATPase homolog 1 (Aha1), dramatically increased the production of aggregated tau. Treatment with an Aha1 inhibitor, KU-177, dramatically reduced the accumulation of insoluble tau. Aha1 colocalized with tau pathology in human brain tissue, and this association positively correlated with AD progression. Aha1 overexpression in the rTg4510 tau transgenic mouse model promoted insoluble and oligomeric tau accumulation leading to a physiological deficit in cognitive function. Overall, these data demonstrate that Aha1 contributes to tau fibril formation and neurotoxicity through Hsp90. This suggests that therapeutics targeting Aha1 may reduce toxic tau oligomers and slow or prevent neurodegenerative disease progression.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Agregado de Proteínas , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Tauopatías/etiología , Tauopatías/metabolismo , Tauopatías/prevención & control , Proteínas tau/química , Proteínas tau/metabolismo
14.
PLoS Biol ; 15(6): e2001336, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28654636

RESUMEN

The accumulation of amyloidogenic proteins is a pathological hallmark of neurodegenerative disorders. The aberrant accumulation of the microtubule associating protein tau (MAPT, tau) into toxic oligomers and amyloid deposits is a primary pathology in tauopathies, the most common of which is Alzheimer's disease (AD). Intrinsically disordered proteins, like tau, are enriched with proline residues that regulate both secondary structure and aggregation propensity. The orientation of proline residues is regulated by cis/trans peptidyl-prolyl isomerases (PPIases). Here we show that cyclophilin 40 (CyP40), a PPIase, dissolves tau amyloids in vitro. Additionally, CyP40 ameliorated silver-positive and oligomeric tau species in a mouse model of tau accumulation, preserving neuronal health and cognition. Nuclear magnetic resonance (NMR) revealed that CyP40 interacts with tau at sites rich in proline residues. CyP40 was also able to interact with and disaggregate other aggregating proteins that contain prolines. Moreover, CyP40 lacking PPIase activity prevented its capacity for disaggregation in vitro. Finally, we describe a unique structural property of CyP40 that may permit disaggregation to occur in an energy-independent manner. This study identifies a novel human protein disaggregase and, for the first time, demonstrates its capacity to dissolve intracellular amyloids.


Asunto(s)
Amiloide/metabolismo , Ciclofilinas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Amiloide/genética , Amiloide/ultraestructura , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Masculino , Ratones Transgénicos , Microscopía Electrónica de Transmisión , Enfermedades Neurodegenerativas/genética , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas , Tauopatías/genética , Tauopatías/metabolismo , alfa-Sinucleína/genética , Proteínas tau/genética
15.
Front Neurosci ; 11: 724, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311797

RESUMEN

The ATP-dependent 90 kDa heat shock protein, Hsp90, is a major regulator of protein triage, from assisting in nascent protein folding to refolding or degrading aberrant proteins. Tau, a microtubule associated protein, aberrantly accumulates in Alzheimer's disease (AD) and other neurodegenerative diseases, deemed tauopathies. Hsp90 binds to and regulates tau fate in coordination with a diverse group of co-chaperones. Imbalances in chaperone levels and activity, as found in the aging brain, can contribute to disease onset and progression. For example, the levels of the Hsp90 co-chaperone, FK506-binding protein 51 kDa (FKBP51), progressively increase with age. In vitro and in vivo tau models demonstrated that FKBP51 synergizes with Hsp90 to increase neurotoxic tau oligomer production. Inversely, protein phosphatase 5 (PP5), which dephosphorylates tau to restore microtubule-binding function, is repressed with aging and activity is further repressed in AD. Similarly, levels of cyclophilin 40 (CyP40) are reduced in the aged brain and further repressed in AD. Interestingly, CyP40 was shown to breakup tau aggregates in vitro and prevent tau-induced neurotoxicity in vivo. Moreover, the only known stimulator of Hsp90 ATPase activity, Aha1, increases tau aggregation and toxicity. While the levels of Aha1 are not significantly altered with aging, increased levels have been found in AD brains. Overall, these changes in the Hsp90 heterocomplex could drive tau deposition and neurotoxicity. While the relationship of tau and Hsp90 in coordination with these co-chaperones is still under investigation, it is clear that imbalances in these proteins with aging can contribute to disease onset and progression. This review highlights the current understanding of how the Hsp90 family of molecular chaperones regulates tau or other misfolded proteins in neurodegenerative diseases with a particular emphasis on the impact of aging.

16.
Nature ; 538(7625): 397-401, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27706135

RESUMEN

Transient, multi-protein complexes are important facilitators of cellular functions. This includes the chaperome, an abundant protein family comprising chaperones, co-chaperones, adaptors, and folding enzymes-dynamic complexes of which regulate cellular homeostasis together with the protein degradation machinery. Numerous studies have addressed the role of chaperome members in isolation, yet little is known about their relationships regarding how they interact and function together in malignancy. As function is probably highly dependent on endogenous conditions found in native tumours, chaperomes have resisted investigation, mainly due to the limitations of methods needed to disrupt or engineer the cellular environment to facilitate analysis. Such limitations have led to a bottleneck in our understanding of chaperome-related disease biology and in the development of chaperome-targeted cancer treatment. Here we examined the chaperome complexes in a large set of tumour specimens. The methods used maintained the endogenous native state of tumours and we exploited this to investigate the molecular characteristics and composition of the chaperome in cancer, the molecular factors that drive chaperome networks to crosstalk in tumours, the distinguishing factors of the chaperome in tumours sensitive to pharmacologic inhibition, and the characteristics of tumours that may benefit from chaperome therapy. We find that under conditions of stress, such as malignant transformation fuelled by MYC, the chaperome becomes biochemically 'rewired' to form a network of stable, survival-facilitating, high-molecular-weight complexes. The chaperones heat shock protein 90 (HSP90) and heat shock cognate protein 70 (HSC70) are nucleating sites for these physically and functionally integrated complexes. The results indicate that these tightly integrated chaperome units, here termed the epichaperome, can function as a network to enhance cellular survival, irrespective of tissue of origin or genetic background. The epichaperome, present in over half of all cancers tested, has implications for diagnostics and also provides potential vulnerability as a target for drug intervention.


Asunto(s)
Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Descubrimiento de Drogas , Femenino , Genes myc/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Chaperonas Moleculares/antagonistas & inhibidores , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Especificidad de Órganos
17.
Nano Lett ; 16(10): 6099-6108, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27669096

RESUMEN

The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.

18.
Curr Top Med Chem ; 16(25): 2829-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27072699

RESUMEN

A toxic accumulation of proteins is the hallmark pathology of several neurodegenerative disorders. Protein accumulation is regularly prevented by the network of molecular chaperone proteins, including and especially Hsp90. For reasons not yet elucidated, Hsp90 and the molecular chaperones interact with, but do not degrade, these toxic proteins resulting in the pathogenic accumulation of proteins such as tau, in Alzheimer's Disease, and α-synuclein, in Parkinson's Disease. In this review, we describe the associations between Hsp90 and the pathogenic and driver proteins of several neurodegenerative disorders. We additionally describe how the inhibition of Hsp90 promotes the degradation of both mutant and pathogenic protein species in models of neurodegenerative diseases. We also examine the current state of Hsp90 inhibitors capable of crossing the blood-brain barrier; compounds which may be capable of slowing, preventing, and possible reversing neurodegenerative diseases.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Humanos , Proteínas tau/metabolismo
19.
Cell Rep ; 13(10): 2159-73, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26628369

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous and fatal disease with an urgent need for improved therapeutic regimens given that most patients die from relapsed disease. Irrespective of mutation status, the development of aggressive leukemias is enabled by increasing dependence on signaling networks. We demonstrate that a hyperactive signalosome drives addiction of AML cells to a tumor-specific Hsp90 species (teHsp90). Through genetic, environmental, and pharmacologic perturbations, we demonstrate a direct and quantitative link between hyperactivated signaling pathways and apoptotic sensitivity of AML to teHsp90 inhibition. Specifically, we find that hyperactive JAK-STAT and PI3K-AKT signaling networks are maintained by teHsp90 and, in fact, gradual activation of these networks drives tumors increasingly dependent on teHsp90. Thus, although clinically aggressive AML survives via signalosome activation, this addiction creates a vulnerability that can be exploited with Hsp90-directed therapy.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Transducción de Señal/fisiología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Benzodioxoles/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Humanos , Ratones , Ratones Desnudos , Purinas/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cancer Res ; 74(23): 7125-36, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25297628

RESUMEN

The kinase PRKD2 (protein kinase D) is a crucial regulator of tumor cell-endothelial cell communication in gastrointestinal tumors and glioblastomas, but its mechanistic contributions to malignant development are not understood. Here, we report that the oncogenic chaperone HSP90 binds to and stabilizes PRKD2 in human cancer cells. Pharmacologic inhibition of HSP90 with structurally divergent small molecules currently in clinical development triggered proteasome-dependent degradation of PRKD2, augmenting apoptosis in human cancer cells of various tissue origins. Conversely, ectopic expression of PRKD2 protected cancer cells from the apoptotic effects of HSP90 abrogation, restoring blood vessel formation in two preclinical models of solid tumors. Mechanistic studies revealed that PRKD2 is essential for hypoxia-induced accumulation of hypoxia-inducible factor-1α (HIF1α) and activation of NF-κB in tumor cells. Notably, ectopic expression of PRKD2 was able to partially restore HIF1α and secreted VEGF-A levels in hypoxic cancer cells treated with HSP90 inhibitors. Taken together, our findings indicate that signals from hypoxia and HSP90 pathways are interconnected and funneled by PRKD2 into the NF-κB/VEGF-A signaling axis to promote tumor angiogenesis and tumor growth.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Neovascularización Patológica/metabolismo , Proteína Quinasa C/metabolismo , Animales , Apoptosis/fisiología , Hipoxia de la Célula/fisiología , Línea Celular Tumoral , Femenino , Células HCT116 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Desnudos , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...