Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37512907

RESUMEN

A large variety of cheeses can be produced using different manufacturing processes and various starter or adjunct cultures. In this study, we have described the succession of the microbial population during the commercial production and subsequent ripening of smear-ripened cheese using 16S rRNA gene sequencing. The composition of the microbiota during the first 6 days of production was constant and consisted mainly of LAB (lactic acid bacteria) originating from the starter culture. From day 7, the proportion of LAB decreased as other bacteria from the production environment appeared. From the 14th day of production, the relative proportion of LAB decreased further, and at the end of ripening, bacteria from the environment wholly dominated. These adventitious microbiota included Psychrobacter, Pseudoalteromonas haloplanktis/hodoensis, Vibrio toranzoniae, and Vibrio litoralis (Proteobacteria phylum), as well as Vagococcus and Marinilactibacillus (Firmicutes phylum), Psychrilyobacter (Fusobacteria phylum), and Malaciobacter marinus (Campylobacterota phylum), all of which appeared to be characteristic taxa associated with the cheese rind. Subsequent analysis showed that the production and ripening of smear-ripened cheese could be divided into three stages, and that the microbiota compositions of samples from the first week of production, the second week of production, and supermarket shelf life all differed.

2.
Foods ; 11(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35206010

RESUMEN

Steak tartare is a raw, ready-to-eat meal popular in European countries, the safety of which is often discussed due to the risk of foodborne illness. The aim of this study was to determine the prevalence of Listeria monocytogenes in vacuum-packed steak tartare from retailers in the Czech Republic, characterize the strains obtained by typing methods and to evaluate the efficacy of ListexTM P100 against L. monocytogenes artificially inoculated into steak tartare samples. The prevalence of L. monocytogenes was 55% and 17 isolates belonging mostly to serotype 1/2a were obtained. Altogether 11 sequence types and 11 clonal complexes were assigned based on the whole genome sequencing (WGS) signifying the high diversity of L. monocytogenes isolates obtained. Core genome multi-locus sequence typing (cgMLST) did not confirm an epidemiological connection with human cases of listeriosis. The efficacy of ListexTM P100 treatment at concentrations of 108 and 109 PFU/g on artificially inoculated beef steak tartare samples was not efficient. Based on the results of this study, steak tartare from retailers can be considered as a source of L. monocytogenes that remains a challenge to the food industry.

3.
J Appl Microbiol ; 132(1): 725-735, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34192401

RESUMEN

AIMS: The purpose of the study was to evaluate the occurrence of Campylobacter jejuni and Campylobacter coli in the aquatic environment based on the water origin, seasonality and physico-chemical properties. METHODS AND RESULTS: The occurrence of C. jejuni and C. coli was determined in waste (29) or surface (56) waters in four different seasons. The air and water temperatures were measured during sampling and chemical analyses of water samples for ammonium, chloride, chlorine, nitrite, nitrate, phosphate and iron were performed. The thermotolerant Campylobacter spp. were more frequently detected in wastewater (59%; 17 positive samples) compared to surface water (38%; 21 positive samples), with the highest rate in autumn (67% of samples positive) and with a higher C. coli occurrence than C. jejuni (31% vs. 26%). Ammonium (above 0.2 mg/L) and chloride ion concentrations (above 60 mg/L) favour C. jejuni. Similarly, C. coli occurrence in water was supported by ammonium (above 0.2 mg/L), chloride (above 60 mg/L) and in addition by phosphate ion concentrations (below 0.7 mg/L). CONCLUSIONS: Campylobacter presence in water is influenced by physico-chemical parameters such as concentrations of ammonium and chloride ions. SIGNIFICANCE AND IMPACT OF THE STUDY: Water environment is an alternative source of Campylobacter. The concentration of ammonium and chloride ions can be used as a basis for successful prediction of the potential occurrence of C. jejuni and C. coli in wastewater and surface water in future.


Asunto(s)
Infecciones por Campylobacter , Campylobacter coli , Campylobacter jejuni , Campylobacter , Infecciones por Campylobacter/epidemiología , Humanos , Aguas Residuales
4.
Artículo en Inglés | MEDLINE | ID: mdl-34198825

RESUMEN

The natural environment and water are among the sources of Campylobacter jejuni and Campylobacter coli. A limited number of protocols exist for the isolation of campylobacters in poorly filterable water. Therefore, the goal of our work was to find a more efficient method of Campylobacter isolation and detection from wastewater and surface water than the ISO standard. In the novel rapid culture method presented here, samples are centrifuged at high speed, and the resuspended pellet is inoculated on a filter, which is placed on Campylobacter selective mCCDA agar. The motile bacteria pass through the filter pores, and mCCDA agar suppresses the growth of background microbiota on behalf of campylobacters. This culture-based method is more efficient for the detection and isolation of Campylobacter jejuni and Campylobacter coli from poorly filterable water than the ISO 17995 standard. It also is less time-consuming, taking only 72 h and comprising three steps, while the ISO standard method requires five or six steps and 144-192 h. This novel culture method, based on high-speed centrifugation, bacterial motility, and selective cultivation conditions, can be used for the detection and isolation of various bacteria from water samples.


Asunto(s)
Campylobacter coli , Campylobacter jejuni , Campylobacter , Medios de Cultivo , Agua
5.
Toxicon ; 197: 126-135, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33901549

RESUMEN

Microbiota can significantly contribute to colorectal cancer initiation and development. It was described that E. coli harbouring polyketide synthase (pks) genes can synthetize bacterial toxin colibactin, which was first described by Nougayrede's group in 2006. E. coli positive for pks genes were overrepresented in colorectal cancer biopsies and, therefore, prevalence and the effect of pks positive bacteria as a risk factor in colorectal cancer development is in our interest. Interestingly, pks gene cluster in E. coli shares a striking 100% sequence identity with K. pneumoniae, suggesting that their function and regulation are conserved. Moreover, K. pneumoniae can express a variety of virulence factors, including capsules, siderophores, iron-scavenging systems, adhesins and endotoxins. It was reported that pks cluster and thereby colibactin is also related to the hypervirulence of K. pneumoniae. Acquisition of the pks locus is associated with K. pneumoniae gut colonisation and mucosal invasion. Colibactin also increases the likelihood of serious complications of bacterial infections, such as development of meningitis and potentially tumorigenesis. Even though K. pneumoniae is undoubtedly a gut colonizer, the role of pks positive K. pneumoniae in GIT has not yet been investigated. It seems that CRC-distinctive microbiota is already present in the early stages of cancer development and, therefore, microbiome analysis could help to discover the early stages of cancer, which are crucial for effectiveness of anticancer therapy. We hypothesize, that pks positive K. pneumoniae can be a potential biomarker of tumour prevalence and anticancer therapy response.


Asunto(s)
Toxinas Bacterianas , Neoplasias Colorrectales , Policétidos , Neoplasias Colorrectales/inducido químicamente , Escherichia coli , Humanos , Klebsiella pneumoniae , Péptidos , Policétidos/toxicidad
6.
Front Microbiol ; 11: 599882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519740

RESUMEN

Environmental adaptation of Listeria monocytogenes is a complex process involving various mechanisms that can contribute to their survival in the environment, further spreading throughout the food chain and the development of listeriosis. The aim of this study was to analyze whole-genome sequencing data in a set of 270 strains of L. monocytogenes derived from human listeriosis cases and food and environmental sources in order to compare the prevalence and type of genetic determinants encoding cadmium, arsenic, and benzalkonium chloride resistance. Most of the detected genes of cadmium (27.8%), arsenic (15.6%), and benzalkonium chloride (7.0%) resistance were located on mobile genetic elements, even in phylogenetically distant lineages I and II, which indicates the possibility of their horizontal spread. Although no differences were found in the prevalence of these genes between human and food strains, they have been detected sporadically in strains from the environment. Regarding cadmium resistance genes, cadA1C1_Tn5422 predominated, especially in clonal complexes (CCs) 121, 8, and 3 strains. At the same time, qacH_Tn6188-encoding benzalkonium chloride resistance was most frequently detected in the genome of CC121 strains. Genes encoding arsenic resistance were detected mainly in strains CC2 (located on the chromosomal island LGI2) and CC9 (carried on Tn554). The results indicated a relationship between the spread of genes encoding resistance to cadmium, arsenic, and benzalkonium chloride in certain serotypes and CCs and showed the need for a more extensive study of L. monocytogenes strains to better understand their ability to adapt to the food production environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...